Taylor expansion of ln(1-x) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Basic Taylor expansion questionStuck on Taylor expansion questionTaylor expansion of the Error functionUsing substitution while using taylor expansionTaylor expansion of a matrix to scalar functionTaylor expansion of $log(x - x^2)$ at 0?Taylor expansion of $(1-x)(1-y)$.Taylor Expansion of Eigenvector PerturbationTaylor expansion of $ln(1 + frac2^xn)$How to see the following Taylor expansion?

Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?

How does the math work when buying airline miles?

How to write the following sign?

Amount of permutations on an NxNxN Rubik's Cube

How to compare two different files line by line in unix?

Should I use a zero-interest credit card for a large one-time purchase?

Chinese Seal on silk painting - what does it mean?

Is it a good idea to use CNN to classify 1D signal?

Why is it faster to reheat something than it is to cook it?

Most bit efficient text communication method?

What is "gratricide"?

Do any jurisdictions seriously consider reclassifying social media websites as publishers?

If Windows 7 doesn't support WSL, then what does Linux subsystem option mean?

Dating a Former Employee

What's the meaning of "fortified infraction restraint"?

Is CEO the "profession" with the most psychopaths?

Can the Great Weapon Master feat's damage bonus and accuracy penalty apply to attacks from the Spiritual Weapon spell?

Significance of Cersei's obsession with elephants?

Sum letters are not two different

Trademark violation for app?

How to play a character with a disability or mental disorder without being offensive?

What is the difference between globalisation and imperialism?

What is this clumpy 20-30cm high yellow-flowered plant?

Illegal assignment from sObject to Id



Taylor expansion of ln(1-x)



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Basic Taylor expansion questionStuck on Taylor expansion questionTaylor expansion of the Error functionUsing substitution while using taylor expansionTaylor expansion of a matrix to scalar functionTaylor expansion of $log(x - x^2)$ at 0?Taylor expansion of $(1-x)(1-y)$.Taylor Expansion of Eigenvector PerturbationTaylor expansion of $ln(1 + frac2^xn)$How to see the following Taylor expansion?










3












$begingroup$


I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
$$
ln(1-x) = -x-dots
$$

But assuming $x$ is small and expand around $1$, I got
$$
ln(1-x) approx ln(1) + fracd(ln(1-x))dxbiggvert_x=0[(1-x)-1] approx 0 + frac11-xbiggvert_x=0(-1)(-x) = x.
$$

Using the definition of Taylor expansion $f(z) approx f(a) + fracdf(z)dzbiggvert_z=a(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.



I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.










share|cite|improve this question







New contributor




Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    3












    $begingroup$


    I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
    $$
    ln(1-x) = -x-dots
    $$

    But assuming $x$ is small and expand around $1$, I got
    $$
    ln(1-x) approx ln(1) + fracd(ln(1-x))dxbiggvert_x=0[(1-x)-1] approx 0 + frac11-xbiggvert_x=0(-1)(-x) = x.
    $$

    Using the definition of Taylor expansion $f(z) approx f(a) + fracdf(z)dzbiggvert_z=a(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.



    I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.










    share|cite|improve this question







    New contributor




    Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      3












      3








      3





      $begingroup$


      I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
      $$
      ln(1-x) = -x-dots
      $$

      But assuming $x$ is small and expand around $1$, I got
      $$
      ln(1-x) approx ln(1) + fracd(ln(1-x))dxbiggvert_x=0[(1-x)-1] approx 0 + frac11-xbiggvert_x=0(-1)(-x) = x.
      $$

      Using the definition of Taylor expansion $f(z) approx f(a) + fracdf(z)dzbiggvert_z=a(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.



      I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.










      share|cite|improve this question







      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
      $$
      ln(1-x) = -x-dots
      $$

      But assuming $x$ is small and expand around $1$, I got
      $$
      ln(1-x) approx ln(1) + fracd(ln(1-x))dxbiggvert_x=0[(1-x)-1] approx 0 + frac11-xbiggvert_x=0(-1)(-x) = x.
      $$

      Using the definition of Taylor expansion $f(z) approx f(a) + fracdf(z)dzbiggvert_z=a(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.



      I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.







      calculus






      share|cite|improve this question







      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 3 hours ago









      LepnakLepnak

      182




      182




      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          If one considers
          $$
          f(x)=ln (1-x),qquad |x|<1,
          $$
          one has
          $$
          f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
          $$
          giving, by the Taylor expansion,
          $$
          f(x)=0-x-fracx^22+O(x^3)
          $$
          as $x to 0$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
            $endgroup$
            – Lepnak
            3 hours ago










          • $begingroup$
            The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
            $endgroup$
            – Minus One-Twelfth
            2 hours ago











          • $begingroup$
            Hmm I think I see what I did wrong. Thanks for all your answers.
            $endgroup$
            – Lepnak
            2 hours ago


















          2












          $begingroup$

          $$y=ln(1-x)$$
          $$y'=-frac11-x=-sum_n=0^inftyx^n$$
          so
          $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Lepnak is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3193068%2ftaylor-expansion-of-ln1-x%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            If one considers
            $$
            f(x)=ln (1-x),qquad |x|<1,
            $$
            one has
            $$
            f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
            $$
            giving, by the Taylor expansion,
            $$
            f(x)=0-x-fracx^22+O(x^3)
            $$
            as $x to 0$.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
              $endgroup$
              – Lepnak
              3 hours ago










            • $begingroup$
              The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
              $endgroup$
              – Minus One-Twelfth
              2 hours ago











            • $begingroup$
              Hmm I think I see what I did wrong. Thanks for all your answers.
              $endgroup$
              – Lepnak
              2 hours ago















            1












            $begingroup$

            If one considers
            $$
            f(x)=ln (1-x),qquad |x|<1,
            $$
            one has
            $$
            f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
            $$
            giving, by the Taylor expansion,
            $$
            f(x)=0-x-fracx^22+O(x^3)
            $$
            as $x to 0$.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
              $endgroup$
              – Lepnak
              3 hours ago










            • $begingroup$
              The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
              $endgroup$
              – Minus One-Twelfth
              2 hours ago











            • $begingroup$
              Hmm I think I see what I did wrong. Thanks for all your answers.
              $endgroup$
              – Lepnak
              2 hours ago













            1












            1








            1





            $begingroup$

            If one considers
            $$
            f(x)=ln (1-x),qquad |x|<1,
            $$
            one has
            $$
            f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
            $$
            giving, by the Taylor expansion,
            $$
            f(x)=0-x-fracx^22+O(x^3)
            $$
            as $x to 0$.






            share|cite|improve this answer











            $endgroup$



            If one considers
            $$
            f(x)=ln (1-x),qquad |x|<1,
            $$
            one has
            $$
            f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
            $$
            giving, by the Taylor expansion,
            $$
            f(x)=0-x-fracx^22+O(x^3)
            $$
            as $x to 0$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 3 hours ago

























            answered 3 hours ago









            Olivier OloaOlivier Oloa

            109k17178294




            109k17178294











            • $begingroup$
              Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
              $endgroup$
              – Lepnak
              3 hours ago










            • $begingroup$
              The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
              $endgroup$
              – Minus One-Twelfth
              2 hours ago











            • $begingroup$
              Hmm I think I see what I did wrong. Thanks for all your answers.
              $endgroup$
              – Lepnak
              2 hours ago
















            • $begingroup$
              Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
              $endgroup$
              – Lepnak
              3 hours ago










            • $begingroup$
              The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
              $endgroup$
              – Minus One-Twelfth
              2 hours ago











            • $begingroup$
              Hmm I think I see what I did wrong. Thanks for all your answers.
              $endgroup$
              – Lepnak
              2 hours ago















            $begingroup$
            Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
            $endgroup$
            – Lepnak
            3 hours ago




            $begingroup$
            Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
            $endgroup$
            – Lepnak
            3 hours ago












            $begingroup$
            The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
            $endgroup$
            – Minus One-Twelfth
            2 hours ago





            $begingroup$
            The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
            $endgroup$
            – Minus One-Twelfth
            2 hours ago













            $begingroup$
            Hmm I think I see what I did wrong. Thanks for all your answers.
            $endgroup$
            – Lepnak
            2 hours ago




            $begingroup$
            Hmm I think I see what I did wrong. Thanks for all your answers.
            $endgroup$
            – Lepnak
            2 hours ago











            2












            $begingroup$

            $$y=ln(1-x)$$
            $$y'=-frac11-x=-sum_n=0^inftyx^n$$
            so
            $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$






            share|cite|improve this answer











            $endgroup$

















              2












              $begingroup$

              $$y=ln(1-x)$$
              $$y'=-frac11-x=-sum_n=0^inftyx^n$$
              so
              $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$






              share|cite|improve this answer











              $endgroup$















                2












                2








                2





                $begingroup$

                $$y=ln(1-x)$$
                $$y'=-frac11-x=-sum_n=0^inftyx^n$$
                so
                $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$






                share|cite|improve this answer











                $endgroup$



                $$y=ln(1-x)$$
                $$y'=-frac11-x=-sum_n=0^inftyx^n$$
                so
                $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 3 hours ago

























                answered 3 hours ago









                E.H.EE.H.E

                16.8k11969




                16.8k11969




















                    Lepnak is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Lepnak is a new contributor. Be nice, and check out our Code of Conduct.












                    Lepnak is a new contributor. Be nice, and check out our Code of Conduct.











                    Lepnak is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3193068%2ftaylor-expansion-of-ln1-x%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр