black dwarf stars and dark matterHow can Y-dwarf stars have such a low temperature?Dark Matter 'Stars'Dark matter and black holeDid dark matter cause the formation of the Solar System?Are black holes in a binary system with white holes, and are they both wormholes?Do clouds of dark matter cool and contract?Direct Dark Matter Detection: relative velocity between WIMPs & NucleiWhen and where was WIMP dark matter formed?Overlap between experimental searches for axion and WIMP dark matterWhat is the theoretical lower mass limit for a white dwarf?
How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)
Are white and non-white police officers equally likely to kill black suspects?
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
What is the offset in a seaplane's hull?
Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)
How to make payment on the internet without leaving a money trail?
How can I fix this gap between bookcases I made?
Why are 150k or 200k jobs considered good when there are 300k+ births a month?
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
How can bays and straits be determined in a procedurally generated map?
I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine
DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?
Is there a minimum number of transactions in a block?
My colleague's body is amazing
Copycat chess is back
Can a German sentence have two subjects?
Patience, young "Padovan"
Why is "Reports" in sentence down without "The"
least quadratic residue under GRH: an EXPLICIT bound
Why CLRS example on residual networks does not follows its formula?
What defenses are there against being summoned by the Gate spell?
XeLaTeX and pdfLaTeX ignore hyphenation
Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).
declaring a variable twice in IIFE
black dwarf stars and dark matter
How can Y-dwarf stars have such a low temperature?Dark Matter 'Stars'Dark matter and black holeDid dark matter cause the formation of the Solar System?Are black holes in a binary system with white holes, and are they both wormholes?Do clouds of dark matter cool and contract?Direct Dark Matter Detection: relative velocity between WIMPs & NucleiWhen and where was WIMP dark matter formed?Overlap between experimental searches for axion and WIMP dark matterWhat is the theoretical lower mass limit for a white dwarf?
$begingroup$
Today we understand that a black dwarf star represents a hypothetical star that is the result of the complete consumption of the energy of a white dwarf which is the remnant of a star of little or half mass (1 solar mass), once all its hydrogen has been consumed or expelled. This rest is a dense piece of "degenerated matter" that slowly cools and crystallizes by emission of heat radiation. So, if these objects (not yet observed) do not emit light but interact gravitationally with the surrounding matter, we can not say that dark matter may be black dwarf stars that are contained within the galactic halo? To discard weak interaction particles such as WIMP's or its opposite, the MACHO's ("massive compact halo objects")
astrophysics astronomy dark-matter stars wimps
$endgroup$
add a comment |
$begingroup$
Today we understand that a black dwarf star represents a hypothetical star that is the result of the complete consumption of the energy of a white dwarf which is the remnant of a star of little or half mass (1 solar mass), once all its hydrogen has been consumed or expelled. This rest is a dense piece of "degenerated matter" that slowly cools and crystallizes by emission of heat radiation. So, if these objects (not yet observed) do not emit light but interact gravitationally with the surrounding matter, we can not say that dark matter may be black dwarf stars that are contained within the galactic halo? To discard weak interaction particles such as WIMP's or its opposite, the MACHO's ("massive compact halo objects")
astrophysics astronomy dark-matter stars wimps
$endgroup$
$begingroup$
I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
$endgroup$
– N. Steinle
5 hours ago
$begingroup$
Dark baryonic matter is baryonic matter that doesn't emit sufficient light to be detected.
$endgroup$
– Cinaed Simson
33 mins ago
add a comment |
$begingroup$
Today we understand that a black dwarf star represents a hypothetical star that is the result of the complete consumption of the energy of a white dwarf which is the remnant of a star of little or half mass (1 solar mass), once all its hydrogen has been consumed or expelled. This rest is a dense piece of "degenerated matter" that slowly cools and crystallizes by emission of heat radiation. So, if these objects (not yet observed) do not emit light but interact gravitationally with the surrounding matter, we can not say that dark matter may be black dwarf stars that are contained within the galactic halo? To discard weak interaction particles such as WIMP's or its opposite, the MACHO's ("massive compact halo objects")
astrophysics astronomy dark-matter stars wimps
$endgroup$
Today we understand that a black dwarf star represents a hypothetical star that is the result of the complete consumption of the energy of a white dwarf which is the remnant of a star of little or half mass (1 solar mass), once all its hydrogen has been consumed or expelled. This rest is a dense piece of "degenerated matter" that slowly cools and crystallizes by emission of heat radiation. So, if these objects (not yet observed) do not emit light but interact gravitationally with the surrounding matter, we can not say that dark matter may be black dwarf stars that are contained within the galactic halo? To discard weak interaction particles such as WIMP's or its opposite, the MACHO's ("massive compact halo objects")
astrophysics astronomy dark-matter stars wimps
astrophysics astronomy dark-matter stars wimps
asked 5 hours ago
jormansandovaljormansandoval
923719
923719
$begingroup$
I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
$endgroup$
– N. Steinle
5 hours ago
$begingroup$
Dark baryonic matter is baryonic matter that doesn't emit sufficient light to be detected.
$endgroup$
– Cinaed Simson
33 mins ago
add a comment |
$begingroup$
I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
$endgroup$
– N. Steinle
5 hours ago
$begingroup$
Dark baryonic matter is baryonic matter that doesn't emit sufficient light to be detected.
$endgroup$
– Cinaed Simson
33 mins ago
$begingroup$
I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
$endgroup$
– N. Steinle
5 hours ago
$begingroup$
I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
$endgroup$
– N. Steinle
5 hours ago
$begingroup$
Dark baryonic matter is baryonic matter that doesn't emit sufficient light to be detected.
$endgroup$
– Cinaed Simson
33 mins ago
$begingroup$
Dark baryonic matter is baryonic matter that doesn't emit sufficient light to be detected.
$endgroup$
– Cinaed Simson
33 mins ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Three reasons:
As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^-5 L_odot$, they are not invisible.
Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.
Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.
$endgroup$
$begingroup$
Most of the dark matter needs to be non baryonic in the Big Bang model since the galaxies wouldn't have formed. If one needs to invoke "magic" to get a cosmological model to form galaxies, then model is probably broken.
$endgroup$
– Cinaed Simson
31 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471183%2fblack-dwarf-stars-and-dark-matter%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Three reasons:
As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^-5 L_odot$, they are not invisible.
Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.
Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.
$endgroup$
$begingroup$
Most of the dark matter needs to be non baryonic in the Big Bang model since the galaxies wouldn't have formed. If one needs to invoke "magic" to get a cosmological model to form galaxies, then model is probably broken.
$endgroup$
– Cinaed Simson
31 mins ago
add a comment |
$begingroup$
Three reasons:
As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^-5 L_odot$, they are not invisible.
Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.
Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.
$endgroup$
$begingroup$
Most of the dark matter needs to be non baryonic in the Big Bang model since the galaxies wouldn't have formed. If one needs to invoke "magic" to get a cosmological model to form galaxies, then model is probably broken.
$endgroup$
– Cinaed Simson
31 mins ago
add a comment |
$begingroup$
Three reasons:
As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^-5 L_odot$, they are not invisible.
Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.
Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.
$endgroup$
Three reasons:
As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^-5 L_odot$, they are not invisible.
Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.
Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.
answered 5 hours ago
Rob JeffriesRob Jeffries
70.3k7142243
70.3k7142243
$begingroup$
Most of the dark matter needs to be non baryonic in the Big Bang model since the galaxies wouldn't have formed. If one needs to invoke "magic" to get a cosmological model to form galaxies, then model is probably broken.
$endgroup$
– Cinaed Simson
31 mins ago
add a comment |
$begingroup$
Most of the dark matter needs to be non baryonic in the Big Bang model since the galaxies wouldn't have formed. If one needs to invoke "magic" to get a cosmological model to form galaxies, then model is probably broken.
$endgroup$
– Cinaed Simson
31 mins ago
$begingroup$
Most of the dark matter needs to be non baryonic in the Big Bang model since the galaxies wouldn't have formed. If one needs to invoke "magic" to get a cosmological model to form galaxies, then model is probably broken.
$endgroup$
– Cinaed Simson
31 mins ago
$begingroup$
Most of the dark matter needs to be non baryonic in the Big Bang model since the galaxies wouldn't have formed. If one needs to invoke "magic" to get a cosmological model to form galaxies, then model is probably broken.
$endgroup$
– Cinaed Simson
31 mins ago
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471183%2fblack-dwarf-stars-and-dark-matter%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
$endgroup$
– N. Steinle
5 hours ago
$begingroup$
Dark baryonic matter is baryonic matter that doesn't emit sufficient light to be detected.
$endgroup$
– Cinaed Simson
33 mins ago