Does higher Oxidation/ reduction potential translate to higher energy storage in battery? The Next CEO of Stack OverflowCan we create a galvanic cell with only half a cell connected to the ground?How can Nernst equation apply in this redox reaction?What are some factors that influence the voltage of voltaic/galvanic cells and why?ElectrochemistryWhat factors could lower the voltage of a galvanic cellElectrode Potential and Effect of Salt Bridge Ions on its ValueWhy does a complete discharge destroy a Li-Ion-Battery?Is flow battery cycle life really as high as the literature claims?water in redox reactionsRelationship between Yield and Applied Potentials

Point distance program written without a framework

Defamation due to breach of confidentiality

Is French Guiana a (hard) EU border?

(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?

Can this note be analyzed as a non-chord tone?

free fall ellipse or parabola?

Is there a reasonable and studied concept of reduction between regular languages?

Is it OK to decorate a log book cover?

Strange use of "whether ... than ..." in official text

Why am I getting "Static method cannot be referenced from a non static context: String String.valueOf(Object)"?

Help! I cannot understand this game’s notations!

Audio Conversion With ADS1243

Film where the government was corrupt with aliens, people sent to kill aliens are given rigged visors not showing the right aliens

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

What is the process for cleansing a very negative action

Could a dragon use its wings to swim?

How to avoid supervisors with prejudiced views?

What steps are necessary to read a Modern SSD in Medieval Europe?

What is the process for purifying your home if you believe it may have been previously used for pagan worship?

Can Sneak Attack be used when hitting with an improvised weapon?

IC has pull-down resistors on SMBus lines?

Lucky Feat: How can "more than one creature spend a luck point to influence the outcome of a roll"?

Won the lottery - how do I keep the money?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?



Does higher Oxidation/ reduction potential translate to higher energy storage in battery?



The Next CEO of Stack OverflowCan we create a galvanic cell with only half a cell connected to the ground?How can Nernst equation apply in this redox reaction?What are some factors that influence the voltage of voltaic/galvanic cells and why?ElectrochemistryWhat factors could lower the voltage of a galvanic cellElectrode Potential and Effect of Salt Bridge Ions on its ValueWhy does a complete discharge destroy a Li-Ion-Battery?Is flow battery cycle life really as high as the literature claims?water in redox reactionsRelationship between Yield and Applied Potentials










2












$begingroup$


Some articles refer to the fact that Lithium is preferred metal of choice for batteries because their half cell voltage is high (slightly above 3V)



If that is the case why can't we use other metals like Mn which can have higher oxidation potential (Mn can have +7 oxidation state which translates to higher oxidation potential)?










share|improve this question







New contributor




Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    There is a difference in a high oxidation state and a large EMF. A number of factors are considered in making a battery, not just the EMF of the half cell. A battery can relatively easily have multiple cells to get a higher voltage.
    $endgroup$
    – MaxW
    10 hours ago















2












$begingroup$


Some articles refer to the fact that Lithium is preferred metal of choice for batteries because their half cell voltage is high (slightly above 3V)



If that is the case why can't we use other metals like Mn which can have higher oxidation potential (Mn can have +7 oxidation state which translates to higher oxidation potential)?










share|improve this question







New contributor




Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    There is a difference in a high oxidation state and a large EMF. A number of factors are considered in making a battery, not just the EMF of the half cell. A battery can relatively easily have multiple cells to get a higher voltage.
    $endgroup$
    – MaxW
    10 hours ago













2












2








2





$begingroup$


Some articles refer to the fact that Lithium is preferred metal of choice for batteries because their half cell voltage is high (slightly above 3V)



If that is the case why can't we use other metals like Mn which can have higher oxidation potential (Mn can have +7 oxidation state which translates to higher oxidation potential)?










share|improve this question







New contributor




Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Some articles refer to the fact that Lithium is preferred metal of choice for batteries because their half cell voltage is high (slightly above 3V)



If that is the case why can't we use other metals like Mn which can have higher oxidation potential (Mn can have +7 oxidation state which translates to higher oxidation potential)?







electrochemistry






share|improve this question







New contributor




Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 10 hours ago









Karthick SKarthick S

111




111




New contributor




Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Karthick S is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    There is a difference in a high oxidation state and a large EMF. A number of factors are considered in making a battery, not just the EMF of the half cell. A battery can relatively easily have multiple cells to get a higher voltage.
    $endgroup$
    – MaxW
    10 hours ago












  • 1




    $begingroup$
    There is a difference in a high oxidation state and a large EMF. A number of factors are considered in making a battery, not just the EMF of the half cell. A battery can relatively easily have multiple cells to get a higher voltage.
    $endgroup$
    – MaxW
    10 hours ago







1




1




$begingroup$
There is a difference in a high oxidation state and a large EMF. A number of factors are considered in making a battery, not just the EMF of the half cell. A battery can relatively easily have multiple cells to get a higher voltage.
$endgroup$
– MaxW
10 hours ago




$begingroup$
There is a difference in a high oxidation state and a large EMF. A number of factors are considered in making a battery, not just the EMF of the half cell. A battery can relatively easily have multiple cells to get a higher voltage.
$endgroup$
– MaxW
10 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

Energy storage depends on the electromotive potential (i.e. difference between species in the electromotive series) and on the number of electrons available.



Li, for example, has an oxidation potential of ~3.04 V relative to hydrogen, but Al has one of 1.66 V, so Li has the greater potential. On the other hand, Li has only one freely available outer electron, but Al has three, so Al stores more charge per mol, giving three times the capacity in coulombs on that basis. On the gripping hand, however, Li has a mass of ~7 amu, and Al is ~27 amu, so an aluminum cell carries around the dead weight of unused neutrons and inner electron/protons.



So, depending on the needs, Li batteries weigh relatively little and provide comparatively high potential, aluminum batteries would hold more charge at a bit lower voltage, and even Zn is useful, though deficient compared to those others in volts and coulombs (it also has a bunch of inert neutrons, but there is no charge for them), because it is relatively inexpensive.






share|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "431"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Karthick S is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111886%2fdoes-higher-oxidation-reduction-potential-translate-to-higher-energy-storage-in%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Energy storage depends on the electromotive potential (i.e. difference between species in the electromotive series) and on the number of electrons available.



    Li, for example, has an oxidation potential of ~3.04 V relative to hydrogen, but Al has one of 1.66 V, so Li has the greater potential. On the other hand, Li has only one freely available outer electron, but Al has three, so Al stores more charge per mol, giving three times the capacity in coulombs on that basis. On the gripping hand, however, Li has a mass of ~7 amu, and Al is ~27 amu, so an aluminum cell carries around the dead weight of unused neutrons and inner electron/protons.



    So, depending on the needs, Li batteries weigh relatively little and provide comparatively high potential, aluminum batteries would hold more charge at a bit lower voltage, and even Zn is useful, though deficient compared to those others in volts and coulombs (it also has a bunch of inert neutrons, but there is no charge for them), because it is relatively inexpensive.






    share|improve this answer











    $endgroup$

















      5












      $begingroup$

      Energy storage depends on the electromotive potential (i.e. difference between species in the electromotive series) and on the number of electrons available.



      Li, for example, has an oxidation potential of ~3.04 V relative to hydrogen, but Al has one of 1.66 V, so Li has the greater potential. On the other hand, Li has only one freely available outer electron, but Al has three, so Al stores more charge per mol, giving three times the capacity in coulombs on that basis. On the gripping hand, however, Li has a mass of ~7 amu, and Al is ~27 amu, so an aluminum cell carries around the dead weight of unused neutrons and inner electron/protons.



      So, depending on the needs, Li batteries weigh relatively little and provide comparatively high potential, aluminum batteries would hold more charge at a bit lower voltage, and even Zn is useful, though deficient compared to those others in volts and coulombs (it also has a bunch of inert neutrons, but there is no charge for them), because it is relatively inexpensive.






      share|improve this answer











      $endgroup$















        5












        5








        5





        $begingroup$

        Energy storage depends on the electromotive potential (i.e. difference between species in the electromotive series) and on the number of electrons available.



        Li, for example, has an oxidation potential of ~3.04 V relative to hydrogen, but Al has one of 1.66 V, so Li has the greater potential. On the other hand, Li has only one freely available outer electron, but Al has three, so Al stores more charge per mol, giving three times the capacity in coulombs on that basis. On the gripping hand, however, Li has a mass of ~7 amu, and Al is ~27 amu, so an aluminum cell carries around the dead weight of unused neutrons and inner electron/protons.



        So, depending on the needs, Li batteries weigh relatively little and provide comparatively high potential, aluminum batteries would hold more charge at a bit lower voltage, and even Zn is useful, though deficient compared to those others in volts and coulombs (it also has a bunch of inert neutrons, but there is no charge for them), because it is relatively inexpensive.






        share|improve this answer











        $endgroup$



        Energy storage depends on the electromotive potential (i.e. difference between species in the electromotive series) and on the number of electrons available.



        Li, for example, has an oxidation potential of ~3.04 V relative to hydrogen, but Al has one of 1.66 V, so Li has the greater potential. On the other hand, Li has only one freely available outer electron, but Al has three, so Al stores more charge per mol, giving three times the capacity in coulombs on that basis. On the gripping hand, however, Li has a mass of ~7 amu, and Al is ~27 amu, so an aluminum cell carries around the dead weight of unused neutrons and inner electron/protons.



        So, depending on the needs, Li batteries weigh relatively little and provide comparatively high potential, aluminum batteries would hold more charge at a bit lower voltage, and even Zn is useful, though deficient compared to those others in volts and coulombs (it also has a bunch of inert neutrons, but there is no charge for them), because it is relatively inexpensive.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 3 hours ago

























        answered 8 hours ago









        DrMoishe PippikDrMoishe Pippik

        14.5k1231




        14.5k1231




















            Karthick S is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Karthick S is a new contributor. Be nice, and check out our Code of Conduct.












            Karthick S is a new contributor. Be nice, and check out our Code of Conduct.











            Karthick S is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Chemistry Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111886%2fdoes-higher-oxidation-reduction-potential-translate-to-higher-energy-storage-in%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

            Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

            Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe