Is this a new Fibonacci Identity? The Next CEO of Stack Overflowfibonacci identity using generating functionPrimality criterion for generalized Fermat numbers similar to the LLT ?Solvable parametric $7$th and $13$th degree equations using $eta(q)/eta(q^p)$?To what extent is it possible to generalise a natural bijection between trees and $7$-tuples of trees, suggested by divergent series?Two spaces attached to mod 2 level 9 modular forms--a conjectural Hecke isomorphismCan someone explain this appearance of the Fibonacci series in the formula of the Fibonacci series?On the automorphism group of binary quadratic formsFor what (other) families of graphs does the clique-coclique bound hold?Coefficients $U_m(n,k)$ in the identity $n^2m+1=sumlimits_0leq k leq m(-1)^m-kU_m(n,k)cdot n^k$A question on the Faulhaber's formula

Is this a new Fibonacci Identity?



The Next CEO of Stack Overflowfibonacci identity using generating functionPrimality criterion for generalized Fermat numbers similar to the LLT ?Solvable parametric $7$th and $13$th degree equations using $eta(q)/eta(q^p)$?To what extent is it possible to generalise a natural bijection between trees and $7$-tuples of trees, suggested by divergent series?Two spaces attached to mod 2 level 9 modular forms--a conjectural Hecke isomorphismCan someone explain this appearance of the Fibonacci series in the formula of the Fibonacci series?On the automorphism group of binary quadratic formsFor what (other) families of graphs does the clique-coclique bound hold?Coefficients $U_m(n,k)$ in the identity $n^2m+1=sumlimits_0leq k leq m(-1)^m-kU_m(n,k)cdot n^k$A question on the Faulhaber's formula










7












$begingroup$


I have found the following Fibonacci Identity (and proved it).



If $F_n$ denotes the nth Fibonacci Number, we have the following identity
beginequation
F_n-r+hF_n+k+g+1 - F_n-r+gF_n+k+h+1 = (-1)^n+r+h+1 F_g-hF_k+r+1
endequation

where $F_1 = F_2 = 1$, $r leq n$, $h leq g$, and $n, g, k in mathbbN$.



It is not too hard to show that this identity subsumes Cassini's Identity, Catalan's Identity, Vajda's Idenity, and d'Ocagne's identity to name a few.



I have done a pretty thorough literature review, and I have not found anything like this, but I am still wondering if anyone has seen this identity before? I found this by accident after noticing some patterns in some analysis work I was doing, so if this is already known I would be curious to see what the connections are. Thanks for your patience and input!










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    This can be simplified to $F_a - rF_b + k + 1 - F_b - r F_a + k + 1 = (-1)^a + r + 1 F_b - a F_k + r + 1$, using the substitution $a = n + h, b = n + g$, reducing to 5 variables instead of 6.
    $endgroup$
    – user44191
    6 hours ago










  • $begingroup$
    It doesn't have 6 variables? It has 5: $n, r, k, h, g$.
    $endgroup$
    – Grassi
    6 hours ago






  • 1




    $begingroup$
    Sorry, I meant 4 variables instead of 5. I'm pretty sure this can be reduced by changes of variables (with no Fibonacci arithmetic) to Vajda's identity.
    $endgroup$
    – user44191
    6 hours ago







  • 1




    $begingroup$
    This is a disguised version of Vajda's identity (with minor amounts of arithmetic for powers of $-1$); try doing variable substitutions to see for yourself.
    $endgroup$
    – user44191
    5 hours ago











  • $begingroup$
    Yes, but from what I can tell this is no different than saying Vajda's identity is a disguised version of Catalan's identity. You can't go the other way without adding a variable.
    $endgroup$
    – Grassi
    4 hours ago















7












$begingroup$


I have found the following Fibonacci Identity (and proved it).



If $F_n$ denotes the nth Fibonacci Number, we have the following identity
beginequation
F_n-r+hF_n+k+g+1 - F_n-r+gF_n+k+h+1 = (-1)^n+r+h+1 F_g-hF_k+r+1
endequation

where $F_1 = F_2 = 1$, $r leq n$, $h leq g$, and $n, g, k in mathbbN$.



It is not too hard to show that this identity subsumes Cassini's Identity, Catalan's Identity, Vajda's Idenity, and d'Ocagne's identity to name a few.



I have done a pretty thorough literature review, and I have not found anything like this, but I am still wondering if anyone has seen this identity before? I found this by accident after noticing some patterns in some analysis work I was doing, so if this is already known I would be curious to see what the connections are. Thanks for your patience and input!










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    This can be simplified to $F_a - rF_b + k + 1 - F_b - r F_a + k + 1 = (-1)^a + r + 1 F_b - a F_k + r + 1$, using the substitution $a = n + h, b = n + g$, reducing to 5 variables instead of 6.
    $endgroup$
    – user44191
    6 hours ago










  • $begingroup$
    It doesn't have 6 variables? It has 5: $n, r, k, h, g$.
    $endgroup$
    – Grassi
    6 hours ago






  • 1




    $begingroup$
    Sorry, I meant 4 variables instead of 5. I'm pretty sure this can be reduced by changes of variables (with no Fibonacci arithmetic) to Vajda's identity.
    $endgroup$
    – user44191
    6 hours ago







  • 1




    $begingroup$
    This is a disguised version of Vajda's identity (with minor amounts of arithmetic for powers of $-1$); try doing variable substitutions to see for yourself.
    $endgroup$
    – user44191
    5 hours ago











  • $begingroup$
    Yes, but from what I can tell this is no different than saying Vajda's identity is a disguised version of Catalan's identity. You can't go the other way without adding a variable.
    $endgroup$
    – Grassi
    4 hours ago













7












7








7


1



$begingroup$


I have found the following Fibonacci Identity (and proved it).



If $F_n$ denotes the nth Fibonacci Number, we have the following identity
beginequation
F_n-r+hF_n+k+g+1 - F_n-r+gF_n+k+h+1 = (-1)^n+r+h+1 F_g-hF_k+r+1
endequation

where $F_1 = F_2 = 1$, $r leq n$, $h leq g$, and $n, g, k in mathbbN$.



It is not too hard to show that this identity subsumes Cassini's Identity, Catalan's Identity, Vajda's Idenity, and d'Ocagne's identity to name a few.



I have done a pretty thorough literature review, and I have not found anything like this, but I am still wondering if anyone has seen this identity before? I found this by accident after noticing some patterns in some analysis work I was doing, so if this is already known I would be curious to see what the connections are. Thanks for your patience and input!










share|cite|improve this question









$endgroup$




I have found the following Fibonacci Identity (and proved it).



If $F_n$ denotes the nth Fibonacci Number, we have the following identity
beginequation
F_n-r+hF_n+k+g+1 - F_n-r+gF_n+k+h+1 = (-1)^n+r+h+1 F_g-hF_k+r+1
endequation

where $F_1 = F_2 = 1$, $r leq n$, $h leq g$, and $n, g, k in mathbbN$.



It is not too hard to show that this identity subsumes Cassini's Identity, Catalan's Identity, Vajda's Idenity, and d'Ocagne's identity to name a few.



I have done a pretty thorough literature review, and I have not found anything like this, but I am still wondering if anyone has seen this identity before? I found this by accident after noticing some patterns in some analysis work I was doing, so if this is already known I would be curious to see what the connections are. Thanks for your patience and input!







nt.number-theory co.combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 6 hours ago









GrassiGrassi

11626




11626







  • 1




    $begingroup$
    This can be simplified to $F_a - rF_b + k + 1 - F_b - r F_a + k + 1 = (-1)^a + r + 1 F_b - a F_k + r + 1$, using the substitution $a = n + h, b = n + g$, reducing to 5 variables instead of 6.
    $endgroup$
    – user44191
    6 hours ago










  • $begingroup$
    It doesn't have 6 variables? It has 5: $n, r, k, h, g$.
    $endgroup$
    – Grassi
    6 hours ago






  • 1




    $begingroup$
    Sorry, I meant 4 variables instead of 5. I'm pretty sure this can be reduced by changes of variables (with no Fibonacci arithmetic) to Vajda's identity.
    $endgroup$
    – user44191
    6 hours ago







  • 1




    $begingroup$
    This is a disguised version of Vajda's identity (with minor amounts of arithmetic for powers of $-1$); try doing variable substitutions to see for yourself.
    $endgroup$
    – user44191
    5 hours ago











  • $begingroup$
    Yes, but from what I can tell this is no different than saying Vajda's identity is a disguised version of Catalan's identity. You can't go the other way without adding a variable.
    $endgroup$
    – Grassi
    4 hours ago












  • 1




    $begingroup$
    This can be simplified to $F_a - rF_b + k + 1 - F_b - r F_a + k + 1 = (-1)^a + r + 1 F_b - a F_k + r + 1$, using the substitution $a = n + h, b = n + g$, reducing to 5 variables instead of 6.
    $endgroup$
    – user44191
    6 hours ago










  • $begingroup$
    It doesn't have 6 variables? It has 5: $n, r, k, h, g$.
    $endgroup$
    – Grassi
    6 hours ago






  • 1




    $begingroup$
    Sorry, I meant 4 variables instead of 5. I'm pretty sure this can be reduced by changes of variables (with no Fibonacci arithmetic) to Vajda's identity.
    $endgroup$
    – user44191
    6 hours ago







  • 1




    $begingroup$
    This is a disguised version of Vajda's identity (with minor amounts of arithmetic for powers of $-1$); try doing variable substitutions to see for yourself.
    $endgroup$
    – user44191
    5 hours ago











  • $begingroup$
    Yes, but from what I can tell this is no different than saying Vajda's identity is a disguised version of Catalan's identity. You can't go the other way without adding a variable.
    $endgroup$
    – Grassi
    4 hours ago







1




1




$begingroup$
This can be simplified to $F_a - rF_b + k + 1 - F_b - r F_a + k + 1 = (-1)^a + r + 1 F_b - a F_k + r + 1$, using the substitution $a = n + h, b = n + g$, reducing to 5 variables instead of 6.
$endgroup$
– user44191
6 hours ago




$begingroup$
This can be simplified to $F_a - rF_b + k + 1 - F_b - r F_a + k + 1 = (-1)^a + r + 1 F_b - a F_k + r + 1$, using the substitution $a = n + h, b = n + g$, reducing to 5 variables instead of 6.
$endgroup$
– user44191
6 hours ago












$begingroup$
It doesn't have 6 variables? It has 5: $n, r, k, h, g$.
$endgroup$
– Grassi
6 hours ago




$begingroup$
It doesn't have 6 variables? It has 5: $n, r, k, h, g$.
$endgroup$
– Grassi
6 hours ago




1




1




$begingroup$
Sorry, I meant 4 variables instead of 5. I'm pretty sure this can be reduced by changes of variables (with no Fibonacci arithmetic) to Vajda's identity.
$endgroup$
– user44191
6 hours ago





$begingroup$
Sorry, I meant 4 variables instead of 5. I'm pretty sure this can be reduced by changes of variables (with no Fibonacci arithmetic) to Vajda's identity.
$endgroup$
– user44191
6 hours ago





1




1




$begingroup$
This is a disguised version of Vajda's identity (with minor amounts of arithmetic for powers of $-1$); try doing variable substitutions to see for yourself.
$endgroup$
– user44191
5 hours ago





$begingroup$
This is a disguised version of Vajda's identity (with minor amounts of arithmetic for powers of $-1$); try doing variable substitutions to see for yourself.
$endgroup$
– user44191
5 hours ago













$begingroup$
Yes, but from what I can tell this is no different than saying Vajda's identity is a disguised version of Catalan's identity. You can't go the other way without adding a variable.
$endgroup$
– Grassi
4 hours ago




$begingroup$
Yes, but from what I can tell this is no different than saying Vajda's identity is a disguised version of Catalan's identity. You can't go the other way without adding a variable.
$endgroup$
– Grassi
4 hours ago










3 Answers
3






active

oldest

votes


















5












$begingroup$

Here is an expanded comment of user44191. The basic observation is that one can extend $F_n$ to all $nin mathbb Z$ by requiring $F_-n=(-1)^n+1F_n$. Then by Vajda's formula, one has $$F_n'+a'F_n'+b'-F_n'F_n'+a'+b'=(-1)^n'F_a'F_b'=(-1)^n'+a'+1F_-a'F_b',$$ where one uses the extension above in the last equality. Now by the following substitutions, the above identity leads to the one given by user44191: $$n'=b-r,a'=a-b,b'=k+r+1,$$ using the fact that $a-r+1$ is congruent to $a+r+1$ mod $2$.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    "Vajda's identity" is really Tagiuro's identity: A. Tagiuri, Di alcune successioni ricorrenti a termini interi e positivi, Periodico di Matematica 16 (1900–1901), 1–12.
    See also https://math.stackexchange.com/questions/1356391/is-there-a-name-for-this-fibonacci-identity.






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      This identity is a special case of Euler's Identity for Continuants. It is a Pfaffian of degenerate $4times 4$ matrix.



      As Michael Somos mentioned in his comment it is a part of "elliptic realm" where different identities arise as determinants of degenerate matrices. These matrices are degenerate because they are submatrices of infinite matrices of finite rank. For examle the matrix with entries $a_m,n=s_m+ns_m-n$ ($m,nin mathbbZ$) where $s_n$ is the Somos-4 seqence has rank $2$. For Somos-6 corresponding matrix has rank $4$ etc.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "504"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326922%2fis-this-a-new-fibonacci-identity%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        Here is an expanded comment of user44191. The basic observation is that one can extend $F_n$ to all $nin mathbb Z$ by requiring $F_-n=(-1)^n+1F_n$. Then by Vajda's formula, one has $$F_n'+a'F_n'+b'-F_n'F_n'+a'+b'=(-1)^n'F_a'F_b'=(-1)^n'+a'+1F_-a'F_b',$$ where one uses the extension above in the last equality. Now by the following substitutions, the above identity leads to the one given by user44191: $$n'=b-r,a'=a-b,b'=k+r+1,$$ using the fact that $a-r+1$ is congruent to $a+r+1$ mod $2$.






        share|cite|improve this answer









        $endgroup$

















          5












          $begingroup$

          Here is an expanded comment of user44191. The basic observation is that one can extend $F_n$ to all $nin mathbb Z$ by requiring $F_-n=(-1)^n+1F_n$. Then by Vajda's formula, one has $$F_n'+a'F_n'+b'-F_n'F_n'+a'+b'=(-1)^n'F_a'F_b'=(-1)^n'+a'+1F_-a'F_b',$$ where one uses the extension above in the last equality. Now by the following substitutions, the above identity leads to the one given by user44191: $$n'=b-r,a'=a-b,b'=k+r+1,$$ using the fact that $a-r+1$ is congruent to $a+r+1$ mod $2$.






          share|cite|improve this answer









          $endgroup$















            5












            5








            5





            $begingroup$

            Here is an expanded comment of user44191. The basic observation is that one can extend $F_n$ to all $nin mathbb Z$ by requiring $F_-n=(-1)^n+1F_n$. Then by Vajda's formula, one has $$F_n'+a'F_n'+b'-F_n'F_n'+a'+b'=(-1)^n'F_a'F_b'=(-1)^n'+a'+1F_-a'F_b',$$ where one uses the extension above in the last equality. Now by the following substitutions, the above identity leads to the one given by user44191: $$n'=b-r,a'=a-b,b'=k+r+1,$$ using the fact that $a-r+1$ is congruent to $a+r+1$ mod $2$.






            share|cite|improve this answer









            $endgroup$



            Here is an expanded comment of user44191. The basic observation is that one can extend $F_n$ to all $nin mathbb Z$ by requiring $F_-n=(-1)^n+1F_n$. Then by Vajda's formula, one has $$F_n'+a'F_n'+b'-F_n'F_n'+a'+b'=(-1)^n'F_a'F_b'=(-1)^n'+a'+1F_-a'F_b',$$ where one uses the extension above in the last equality. Now by the following substitutions, the above identity leads to the one given by user44191: $$n'=b-r,a'=a-b,b'=k+r+1,$$ using the fact that $a-r+1$ is congruent to $a+r+1$ mod $2$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 4 hours ago









            Cherng-tiao PerngCherng-tiao Perng

            835148




            835148





















                3












                $begingroup$

                "Vajda's identity" is really Tagiuro's identity: A. Tagiuri, Di alcune successioni ricorrenti a termini interi e positivi, Periodico di Matematica 16 (1900–1901), 1–12.
                See also https://math.stackexchange.com/questions/1356391/is-there-a-name-for-this-fibonacci-identity.






                share|cite|improve this answer









                $endgroup$

















                  3












                  $begingroup$

                  "Vajda's identity" is really Tagiuro's identity: A. Tagiuri, Di alcune successioni ricorrenti a termini interi e positivi, Periodico di Matematica 16 (1900–1901), 1–12.
                  See also https://math.stackexchange.com/questions/1356391/is-there-a-name-for-this-fibonacci-identity.






                  share|cite|improve this answer









                  $endgroup$















                    3












                    3








                    3





                    $begingroup$

                    "Vajda's identity" is really Tagiuro's identity: A. Tagiuri, Di alcune successioni ricorrenti a termini interi e positivi, Periodico di Matematica 16 (1900–1901), 1–12.
                    See also https://math.stackexchange.com/questions/1356391/is-there-a-name-for-this-fibonacci-identity.






                    share|cite|improve this answer









                    $endgroup$



                    "Vajda's identity" is really Tagiuro's identity: A. Tagiuri, Di alcune successioni ricorrenti a termini interi e positivi, Periodico di Matematica 16 (1900–1901), 1–12.
                    See also https://math.stackexchange.com/questions/1356391/is-there-a-name-for-this-fibonacci-identity.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 3 hours ago









                    Ira GesselIra Gessel

                    8,4122642




                    8,4122642





















                        2












                        $begingroup$

                        This identity is a special case of Euler's Identity for Continuants. It is a Pfaffian of degenerate $4times 4$ matrix.



                        As Michael Somos mentioned in his comment it is a part of "elliptic realm" where different identities arise as determinants of degenerate matrices. These matrices are degenerate because they are submatrices of infinite matrices of finite rank. For examle the matrix with entries $a_m,n=s_m+ns_m-n$ ($m,nin mathbbZ$) where $s_n$ is the Somos-4 seqence has rank $2$. For Somos-6 corresponding matrix has rank $4$ etc.






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          This identity is a special case of Euler's Identity for Continuants. It is a Pfaffian of degenerate $4times 4$ matrix.



                          As Michael Somos mentioned in his comment it is a part of "elliptic realm" where different identities arise as determinants of degenerate matrices. These matrices are degenerate because they are submatrices of infinite matrices of finite rank. For examle the matrix with entries $a_m,n=s_m+ns_m-n$ ($m,nin mathbbZ$) where $s_n$ is the Somos-4 seqence has rank $2$. For Somos-6 corresponding matrix has rank $4$ etc.






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            This identity is a special case of Euler's Identity for Continuants. It is a Pfaffian of degenerate $4times 4$ matrix.



                            As Michael Somos mentioned in his comment it is a part of "elliptic realm" where different identities arise as determinants of degenerate matrices. These matrices are degenerate because they are submatrices of infinite matrices of finite rank. For examle the matrix with entries $a_m,n=s_m+ns_m-n$ ($m,nin mathbbZ$) where $s_n$ is the Somos-4 seqence has rank $2$. For Somos-6 corresponding matrix has rank $4$ etc.






                            share|cite|improve this answer









                            $endgroup$



                            This identity is a special case of Euler's Identity for Continuants. It is a Pfaffian of degenerate $4times 4$ matrix.



                            As Michael Somos mentioned in his comment it is a part of "elliptic realm" where different identities arise as determinants of degenerate matrices. These matrices are degenerate because they are submatrices of infinite matrices of finite rank. For examle the matrix with entries $a_m,n=s_m+ns_m-n$ ($m,nin mathbbZ$) where $s_n$ is the Somos-4 seqence has rank $2$. For Somos-6 corresponding matrix has rank $4$ etc.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 46 mins ago









                            Alexey UstinovAlexey Ustinov

                            6,90445979




                            6,90445979



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to MathOverflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326922%2fis-this-a-new-fibonacci-identity%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                                Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                                Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр