Which acid/base does a strong base/acid react when added to a buffer solution? The Next CEO of Stack OverflowHow to calculate the pH of a buffered solution with Henderson Hasselbalch?What's happening at the beginning of a weak acid titration?Buffer and strong acidWhy is only one part of buffer in the reactants side?What is causing the buffer region in a weak acid - strong base titration?Why is the hydrolysis of the conjugate base of a weak acid neglected in buffer solutions?Buffer Solution Problem (Acid/Conjugate Base)Why must a buffer solution contain both a weak acid and a salt solution of its conjugate base?How is preparing a buffer possible?Error with explaination of shape of weak acid strong base titration?

How do I secure a TV wall mount?

Early programmable calculators with RS-232

Finitely generated matrix groups whose eigenvalues are all algebraic

Is it OK to decorate a log book cover?

How to find if SQL server backup is encrypted with TDE without restoring the backup

How to unfasten electrical subpanel attached with ramset

That's an odd coin - I wonder why

What difference does it make matching a word with/without a trailing whitespace?

Calculating discount not working

How to show a landlord what we have in savings?

Free fall ellipse or parabola?

What did the word "leisure" mean in late 18th Century usage?

Direct Implications Between USA and UK in Event of No-Deal Brexit

"Eavesdropping" vs "Listen in on"

How can a day be of 24 hours?

Horror film about a man brought out of cryogenic suspension without a soul, around 1990

Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact

pgfplots: How to draw a tangent graph below two others?

Can this transistor (2n2222) take 6V on emitter-base? Am I reading datasheet incorrectly?

How to pronounce fünf in 45

Is it a bad idea to plug the other end of ESD strap to wall ground?

How dangerous is XSS

Which acid/base does a strong base/acid react when added to a buffer solution?

Create custom note boxes



Which acid/base does a strong base/acid react when added to a buffer solution?



The Next CEO of Stack OverflowHow to calculate the pH of a buffered solution with Henderson Hasselbalch?What's happening at the beginning of a weak acid titration?Buffer and strong acidWhy is only one part of buffer in the reactants side?What is causing the buffer region in a weak acid - strong base titration?Why is the hydrolysis of the conjugate base of a weak acid neglected in buffer solutions?Buffer Solution Problem (Acid/Conjugate Base)Why must a buffer solution contain both a weak acid and a salt solution of its conjugate base?How is preparing a buffer possible?Error with explaination of shape of weak acid strong base titration?










2












$begingroup$


I'm in high school chemistry and just learning about buffer solutions. For example, given a buffered solution of $ceCH3COOH$ and $ceNaCH3COO$ with $K_a = 1.8 times 10^-5$, we might want to find what the pH will become if $ce0.010 M KOH$ is added. Given the dissociation of acetic acid:



$$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$



My question is, which acid ($ceCH3COOH$ or the conjugate $ceH3O+$) will the base $ceKOH$ react with? My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the forward direction, but why wouldn't it react with $ceCH3COOH$ since it also is an acid?



Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?










share|improve this question









New contributor




Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    They're all in equilibrium together. It would be mistake to ask which one reacted. Whatever you pick is still part of the equilibrium that needs to readjust.
    $endgroup$
    – Zhe
    5 hours ago










  • $begingroup$
    "My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the $colorredreverse$ direction,".I think to shift the equilibrium in the $colorgreenforward$ direction.
    $endgroup$
    – Adnan AL-Amleh
    4 hours ago















2












$begingroup$


I'm in high school chemistry and just learning about buffer solutions. For example, given a buffered solution of $ceCH3COOH$ and $ceNaCH3COO$ with $K_a = 1.8 times 10^-5$, we might want to find what the pH will become if $ce0.010 M KOH$ is added. Given the dissociation of acetic acid:



$$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$



My question is, which acid ($ceCH3COOH$ or the conjugate $ceH3O+$) will the base $ceKOH$ react with? My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the forward direction, but why wouldn't it react with $ceCH3COOH$ since it also is an acid?



Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?










share|improve this question









New contributor




Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    They're all in equilibrium together. It would be mistake to ask which one reacted. Whatever you pick is still part of the equilibrium that needs to readjust.
    $endgroup$
    – Zhe
    5 hours ago










  • $begingroup$
    "My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the $colorredreverse$ direction,".I think to shift the equilibrium in the $colorgreenforward$ direction.
    $endgroup$
    – Adnan AL-Amleh
    4 hours ago













2












2








2





$begingroup$


I'm in high school chemistry and just learning about buffer solutions. For example, given a buffered solution of $ceCH3COOH$ and $ceNaCH3COO$ with $K_a = 1.8 times 10^-5$, we might want to find what the pH will become if $ce0.010 M KOH$ is added. Given the dissociation of acetic acid:



$$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$



My question is, which acid ($ceCH3COOH$ or the conjugate $ceH3O+$) will the base $ceKOH$ react with? My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the forward direction, but why wouldn't it react with $ceCH3COOH$ since it also is an acid?



Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?










share|improve this question









New contributor




Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm in high school chemistry and just learning about buffer solutions. For example, given a buffered solution of $ceCH3COOH$ and $ceNaCH3COO$ with $K_a = 1.8 times 10^-5$, we might want to find what the pH will become if $ce0.010 M KOH$ is added. Given the dissociation of acetic acid:



$$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$



My question is, which acid ($ceCH3COOH$ or the conjugate $ceH3O+$) will the base $ceKOH$ react with? My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the forward direction, but why wouldn't it react with $ceCH3COOH$ since it also is an acid?



Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?







acid-base equilibrium






share|improve this question









New contributor




Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 3 hours ago







Andrew Li













New contributor




Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









Andrew LiAndrew Li

1155




1155




New contributor




Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Andrew Li is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    They're all in equilibrium together. It would be mistake to ask which one reacted. Whatever you pick is still part of the equilibrium that needs to readjust.
    $endgroup$
    – Zhe
    5 hours ago










  • $begingroup$
    "My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the $colorredreverse$ direction,".I think to shift the equilibrium in the $colorgreenforward$ direction.
    $endgroup$
    – Adnan AL-Amleh
    4 hours ago
















  • $begingroup$
    They're all in equilibrium together. It would be mistake to ask which one reacted. Whatever you pick is still part of the equilibrium that needs to readjust.
    $endgroup$
    – Zhe
    5 hours ago










  • $begingroup$
    "My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the $colorredreverse$ direction,".I think to shift the equilibrium in the $colorgreenforward$ direction.
    $endgroup$
    – Adnan AL-Amleh
    4 hours ago















$begingroup$
They're all in equilibrium together. It would be mistake to ask which one reacted. Whatever you pick is still part of the equilibrium that needs to readjust.
$endgroup$
– Zhe
5 hours ago




$begingroup$
They're all in equilibrium together. It would be mistake to ask which one reacted. Whatever you pick is still part of the equilibrium that needs to readjust.
$endgroup$
– Zhe
5 hours ago












$begingroup$
"My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the $colorredreverse$ direction,".I think to shift the equilibrium in the $colorgreenforward$ direction.
$endgroup$
– Adnan AL-Amleh
4 hours ago




$begingroup$
"My teacher said that the base will react with $ceH3O+$ to shift equilibrium in the $colorredreverse$ direction,".I think to shift the equilibrium in the $colorgreenforward$ direction.
$endgroup$
– Adnan AL-Amleh
4 hours ago










3 Answers
3






active

oldest

votes


















5












$begingroup$

$$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$




My question is, which acid (CH3COOH or the conjugate H3O+) will the base KOH react with?




You have to satisfy two equilibria, the one you wrote and the auto-dissociation of water.



$$ceH3O+ + OH- <=> 2 H2O$$



If you add up the two reaction, you get a third one:



$$ceCH3COOH + OH- <=> H2O + CH3COO-$$



You can go either way (use the second or the third reaction) to explain that $ceOH-$ is part of a neutralization reaction. As a consequence, the concentration of $ceCH3COO-$ increases and that of $ceCH3COOH$ and hydronium decreases.



Hydroxide reacts with hydronium



In this case, you would invoke the second reaction. There is more hydroxide (you are adding sufficient KOH to raise the concentration to 0.01 M) than hydronium (at about pH = 5, the buffer will contain about $pue-5$ M). As the hydronium gets neutralized, the weak acid equilibrium (first reaction) will shift forward (not reverse - typo in the question), making more hydronium, which will get neutralized etc.



Hydroxide reacts with acetic acid



In a different explanation that results in the same answer, you could say the hydroxide turns some of the weak acid into weak base (third reaction). As a result, the weak acid / weak base concentration ratio will change, causing a net reverse shift in the weak acid equilibrium (first reaction) and lowering the hydronium concentration.



Which way is better?



It is personal preference. If we knew how fast the two reactions go, we might choose the faster one, but we don't. For figuring out the equilibrium concentrations and the pH, it does not matter.




Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?




No, and you can always combine two equilibrium reactions with overlapping species (like the hydronium ion in the first and second reaction) to arrive at a third that also has to be at equilibrium.






share|improve this answer











$endgroup$












  • $begingroup$
    "that the concentration of $~ce OH−$ $colorredtextdrops$ and the concentration of $~ce CH3COOH$ $colorredtextincreases$."I think:that the concentration of $ce OH−$ $colorgreentextincreases$ and the concentration of$ce CH3COOH$ $colorgreentextdecreases$.
    $endgroup$
    – Adnan AL-Amleh
    4 hours ago










  • $begingroup$
    Thanks for the comprehensive answer. One question: you said that the direction I choose shouldn't affect pH. But in the Henderson-Hasselbalch equation don't you have to compute $-log([base]/[acid])$? If I choose different directions, won't the new concentrations of base and acid be different?
    $endgroup$
    – Andrew Li
    3 hours ago










  • $begingroup$
    @Adnan AL-Amleh I fixed my typo: The neutralization reaction results in a drop of hydroxide and weak acid, while the concentration of weak base increases.
    $endgroup$
    – Karsten Theis
    3 hours ago










  • $begingroup$
    @Andrew_Li I had a typo which I fixed, and I revised my answer to address your follow-up question. No matter which reaction you start with, the ratio of weak base to weak acid concentration will increase, so the pH will increase. You expect that because that is what strong bases do. Because the solution is buffered, the change is much smaller than it would be for pure water, but it still changes a bit in that direction.
    $endgroup$
    – Karsten Theis
    3 hours ago


















1












$begingroup$

The hydroxide ion reacts with the hydronium ion (I hate that name; I prefer the simpler "hydrogen ion") to increase the concentration of water and decrease the concentration of hydrogen ion. To restore the equilibrium, now more acetic acid will ionize, shifting the equilibrium to the right as you have it written above.






share|improve this answer








New contributor




Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




















    1












    $begingroup$

    Zhe's comment is not wrong, but I'd say that your teacher isn't either.



    Consider a 0.1 molar solution of acetic acid. The water will be about 55 molar.



    The twist here is that the proton of the hydronium ion is very liable in water. In other words, the proton exchange between water molecules happens very very fast. That is why using a mineral acid makes a solution very conductive. So just based on chance, a hydroxide ion is more likely to reaction with a hydronium ion than an acetic acid molecule. Hence your teacher's remark.



    However Zhe is correct in that it really doesn't make a difference overall. The H+/acetate/acetic acid equilibrium will be established "fairly" quickly.






    share|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "431"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Andrew Li is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111957%2fwhich-acid-base-does-a-strong-base-acid-react-when-added-to-a-buffer-solution%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      $$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$




      My question is, which acid (CH3COOH or the conjugate H3O+) will the base KOH react with?




      You have to satisfy two equilibria, the one you wrote and the auto-dissociation of water.



      $$ceH3O+ + OH- <=> 2 H2O$$



      If you add up the two reaction, you get a third one:



      $$ceCH3COOH + OH- <=> H2O + CH3COO-$$



      You can go either way (use the second or the third reaction) to explain that $ceOH-$ is part of a neutralization reaction. As a consequence, the concentration of $ceCH3COO-$ increases and that of $ceCH3COOH$ and hydronium decreases.



      Hydroxide reacts with hydronium



      In this case, you would invoke the second reaction. There is more hydroxide (you are adding sufficient KOH to raise the concentration to 0.01 M) than hydronium (at about pH = 5, the buffer will contain about $pue-5$ M). As the hydronium gets neutralized, the weak acid equilibrium (first reaction) will shift forward (not reverse - typo in the question), making more hydronium, which will get neutralized etc.



      Hydroxide reacts with acetic acid



      In a different explanation that results in the same answer, you could say the hydroxide turns some of the weak acid into weak base (third reaction). As a result, the weak acid / weak base concentration ratio will change, causing a net reverse shift in the weak acid equilibrium (first reaction) and lowering the hydronium concentration.



      Which way is better?



      It is personal preference. If we knew how fast the two reactions go, we might choose the faster one, but we don't. For figuring out the equilibrium concentrations and the pH, it does not matter.




      Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?




      No, and you can always combine two equilibrium reactions with overlapping species (like the hydronium ion in the first and second reaction) to arrive at a third that also has to be at equilibrium.






      share|improve this answer











      $endgroup$












      • $begingroup$
        "that the concentration of $~ce OH−$ $colorredtextdrops$ and the concentration of $~ce CH3COOH$ $colorredtextincreases$."I think:that the concentration of $ce OH−$ $colorgreentextincreases$ and the concentration of$ce CH3COOH$ $colorgreentextdecreases$.
        $endgroup$
        – Adnan AL-Amleh
        4 hours ago










      • $begingroup$
        Thanks for the comprehensive answer. One question: you said that the direction I choose shouldn't affect pH. But in the Henderson-Hasselbalch equation don't you have to compute $-log([base]/[acid])$? If I choose different directions, won't the new concentrations of base and acid be different?
        $endgroup$
        – Andrew Li
        3 hours ago










      • $begingroup$
        @Adnan AL-Amleh I fixed my typo: The neutralization reaction results in a drop of hydroxide and weak acid, while the concentration of weak base increases.
        $endgroup$
        – Karsten Theis
        3 hours ago










      • $begingroup$
        @Andrew_Li I had a typo which I fixed, and I revised my answer to address your follow-up question. No matter which reaction you start with, the ratio of weak base to weak acid concentration will increase, so the pH will increase. You expect that because that is what strong bases do. Because the solution is buffered, the change is much smaller than it would be for pure water, but it still changes a bit in that direction.
        $endgroup$
        – Karsten Theis
        3 hours ago















      5












      $begingroup$

      $$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$




      My question is, which acid (CH3COOH or the conjugate H3O+) will the base KOH react with?




      You have to satisfy two equilibria, the one you wrote and the auto-dissociation of water.



      $$ceH3O+ + OH- <=> 2 H2O$$



      If you add up the two reaction, you get a third one:



      $$ceCH3COOH + OH- <=> H2O + CH3COO-$$



      You can go either way (use the second or the third reaction) to explain that $ceOH-$ is part of a neutralization reaction. As a consequence, the concentration of $ceCH3COO-$ increases and that of $ceCH3COOH$ and hydronium decreases.



      Hydroxide reacts with hydronium



      In this case, you would invoke the second reaction. There is more hydroxide (you are adding sufficient KOH to raise the concentration to 0.01 M) than hydronium (at about pH = 5, the buffer will contain about $pue-5$ M). As the hydronium gets neutralized, the weak acid equilibrium (first reaction) will shift forward (not reverse - typo in the question), making more hydronium, which will get neutralized etc.



      Hydroxide reacts with acetic acid



      In a different explanation that results in the same answer, you could say the hydroxide turns some of the weak acid into weak base (third reaction). As a result, the weak acid / weak base concentration ratio will change, causing a net reverse shift in the weak acid equilibrium (first reaction) and lowering the hydronium concentration.



      Which way is better?



      It is personal preference. If we knew how fast the two reactions go, we might choose the faster one, but we don't. For figuring out the equilibrium concentrations and the pH, it does not matter.




      Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?




      No, and you can always combine two equilibrium reactions with overlapping species (like the hydronium ion in the first and second reaction) to arrive at a third that also has to be at equilibrium.






      share|improve this answer











      $endgroup$












      • $begingroup$
        "that the concentration of $~ce OH−$ $colorredtextdrops$ and the concentration of $~ce CH3COOH$ $colorredtextincreases$."I think:that the concentration of $ce OH−$ $colorgreentextincreases$ and the concentration of$ce CH3COOH$ $colorgreentextdecreases$.
        $endgroup$
        – Adnan AL-Amleh
        4 hours ago










      • $begingroup$
        Thanks for the comprehensive answer. One question: you said that the direction I choose shouldn't affect pH. But in the Henderson-Hasselbalch equation don't you have to compute $-log([base]/[acid])$? If I choose different directions, won't the new concentrations of base and acid be different?
        $endgroup$
        – Andrew Li
        3 hours ago










      • $begingroup$
        @Adnan AL-Amleh I fixed my typo: The neutralization reaction results in a drop of hydroxide and weak acid, while the concentration of weak base increases.
        $endgroup$
        – Karsten Theis
        3 hours ago










      • $begingroup$
        @Andrew_Li I had a typo which I fixed, and I revised my answer to address your follow-up question. No matter which reaction you start with, the ratio of weak base to weak acid concentration will increase, so the pH will increase. You expect that because that is what strong bases do. Because the solution is buffered, the change is much smaller than it would be for pure water, but it still changes a bit in that direction.
        $endgroup$
        – Karsten Theis
        3 hours ago













      5












      5








      5





      $begingroup$

      $$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$




      My question is, which acid (CH3COOH or the conjugate H3O+) will the base KOH react with?




      You have to satisfy two equilibria, the one you wrote and the auto-dissociation of water.



      $$ceH3O+ + OH- <=> 2 H2O$$



      If you add up the two reaction, you get a third one:



      $$ceCH3COOH + OH- <=> H2O + CH3COO-$$



      You can go either way (use the second or the third reaction) to explain that $ceOH-$ is part of a neutralization reaction. As a consequence, the concentration of $ceCH3COO-$ increases and that of $ceCH3COOH$ and hydronium decreases.



      Hydroxide reacts with hydronium



      In this case, you would invoke the second reaction. There is more hydroxide (you are adding sufficient KOH to raise the concentration to 0.01 M) than hydronium (at about pH = 5, the buffer will contain about $pue-5$ M). As the hydronium gets neutralized, the weak acid equilibrium (first reaction) will shift forward (not reverse - typo in the question), making more hydronium, which will get neutralized etc.



      Hydroxide reacts with acetic acid



      In a different explanation that results in the same answer, you could say the hydroxide turns some of the weak acid into weak base (third reaction). As a result, the weak acid / weak base concentration ratio will change, causing a net reverse shift in the weak acid equilibrium (first reaction) and lowering the hydronium concentration.



      Which way is better?



      It is personal preference. If we knew how fast the two reactions go, we might choose the faster one, but we don't. For figuring out the equilibrium concentrations and the pH, it does not matter.




      Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?




      No, and you can always combine two equilibrium reactions with overlapping species (like the hydronium ion in the first and second reaction) to arrive at a third that also has to be at equilibrium.






      share|improve this answer











      $endgroup$



      $$ceCH3COOH + H2O <=> H3O+ + CH3COO-$$




      My question is, which acid (CH3COOH or the conjugate H3O+) will the base KOH react with?




      You have to satisfy two equilibria, the one you wrote and the auto-dissociation of water.



      $$ceH3O+ + OH- <=> 2 H2O$$



      If you add up the two reaction, you get a third one:



      $$ceCH3COOH + OH- <=> H2O + CH3COO-$$



      You can go either way (use the second or the third reaction) to explain that $ceOH-$ is part of a neutralization reaction. As a consequence, the concentration of $ceCH3COO-$ increases and that of $ceCH3COOH$ and hydronium decreases.



      Hydroxide reacts with hydronium



      In this case, you would invoke the second reaction. There is more hydroxide (you are adding sufficient KOH to raise the concentration to 0.01 M) than hydronium (at about pH = 5, the buffer will contain about $pue-5$ M). As the hydronium gets neutralized, the weak acid equilibrium (first reaction) will shift forward (not reverse - typo in the question), making more hydronium, which will get neutralized etc.



      Hydroxide reacts with acetic acid



      In a different explanation that results in the same answer, you could say the hydroxide turns some of the weak acid into weak base (third reaction). As a result, the weak acid / weak base concentration ratio will change, causing a net reverse shift in the weak acid equilibrium (first reaction) and lowering the hydronium concentration.



      Which way is better?



      It is personal preference. If we knew how fast the two reactions go, we might choose the faster one, but we don't. For figuring out the equilibrium concentrations and the pH, it does not matter.




      Is there a specific rule that an added acid/base will react only with the base/acid in the product side of the reaction?




      No, and you can always combine two equilibrium reactions with overlapping species (like the hydronium ion in the first and second reaction) to arrive at a third that also has to be at equilibrium.







      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 3 hours ago

























      answered 5 hours ago









      Karsten TheisKarsten Theis

      3,732541




      3,732541











      • $begingroup$
        "that the concentration of $~ce OH−$ $colorredtextdrops$ and the concentration of $~ce CH3COOH$ $colorredtextincreases$."I think:that the concentration of $ce OH−$ $colorgreentextincreases$ and the concentration of$ce CH3COOH$ $colorgreentextdecreases$.
        $endgroup$
        – Adnan AL-Amleh
        4 hours ago










      • $begingroup$
        Thanks for the comprehensive answer. One question: you said that the direction I choose shouldn't affect pH. But in the Henderson-Hasselbalch equation don't you have to compute $-log([base]/[acid])$? If I choose different directions, won't the new concentrations of base and acid be different?
        $endgroup$
        – Andrew Li
        3 hours ago










      • $begingroup$
        @Adnan AL-Amleh I fixed my typo: The neutralization reaction results in a drop of hydroxide and weak acid, while the concentration of weak base increases.
        $endgroup$
        – Karsten Theis
        3 hours ago










      • $begingroup$
        @Andrew_Li I had a typo which I fixed, and I revised my answer to address your follow-up question. No matter which reaction you start with, the ratio of weak base to weak acid concentration will increase, so the pH will increase. You expect that because that is what strong bases do. Because the solution is buffered, the change is much smaller than it would be for pure water, but it still changes a bit in that direction.
        $endgroup$
        – Karsten Theis
        3 hours ago
















      • $begingroup$
        "that the concentration of $~ce OH−$ $colorredtextdrops$ and the concentration of $~ce CH3COOH$ $colorredtextincreases$."I think:that the concentration of $ce OH−$ $colorgreentextincreases$ and the concentration of$ce CH3COOH$ $colorgreentextdecreases$.
        $endgroup$
        – Adnan AL-Amleh
        4 hours ago










      • $begingroup$
        Thanks for the comprehensive answer. One question: you said that the direction I choose shouldn't affect pH. But in the Henderson-Hasselbalch equation don't you have to compute $-log([base]/[acid])$? If I choose different directions, won't the new concentrations of base and acid be different?
        $endgroup$
        – Andrew Li
        3 hours ago










      • $begingroup$
        @Adnan AL-Amleh I fixed my typo: The neutralization reaction results in a drop of hydroxide and weak acid, while the concentration of weak base increases.
        $endgroup$
        – Karsten Theis
        3 hours ago










      • $begingroup$
        @Andrew_Li I had a typo which I fixed, and I revised my answer to address your follow-up question. No matter which reaction you start with, the ratio of weak base to weak acid concentration will increase, so the pH will increase. You expect that because that is what strong bases do. Because the solution is buffered, the change is much smaller than it would be for pure water, but it still changes a bit in that direction.
        $endgroup$
        – Karsten Theis
        3 hours ago















      $begingroup$
      "that the concentration of $~ce OH−$ $colorredtextdrops$ and the concentration of $~ce CH3COOH$ $colorredtextincreases$."I think:that the concentration of $ce OH−$ $colorgreentextincreases$ and the concentration of$ce CH3COOH$ $colorgreentextdecreases$.
      $endgroup$
      – Adnan AL-Amleh
      4 hours ago




      $begingroup$
      "that the concentration of $~ce OH−$ $colorredtextdrops$ and the concentration of $~ce CH3COOH$ $colorredtextincreases$."I think:that the concentration of $ce OH−$ $colorgreentextincreases$ and the concentration of$ce CH3COOH$ $colorgreentextdecreases$.
      $endgroup$
      – Adnan AL-Amleh
      4 hours ago












      $begingroup$
      Thanks for the comprehensive answer. One question: you said that the direction I choose shouldn't affect pH. But in the Henderson-Hasselbalch equation don't you have to compute $-log([base]/[acid])$? If I choose different directions, won't the new concentrations of base and acid be different?
      $endgroup$
      – Andrew Li
      3 hours ago




      $begingroup$
      Thanks for the comprehensive answer. One question: you said that the direction I choose shouldn't affect pH. But in the Henderson-Hasselbalch equation don't you have to compute $-log([base]/[acid])$? If I choose different directions, won't the new concentrations of base and acid be different?
      $endgroup$
      – Andrew Li
      3 hours ago












      $begingroup$
      @Adnan AL-Amleh I fixed my typo: The neutralization reaction results in a drop of hydroxide and weak acid, while the concentration of weak base increases.
      $endgroup$
      – Karsten Theis
      3 hours ago




      $begingroup$
      @Adnan AL-Amleh I fixed my typo: The neutralization reaction results in a drop of hydroxide and weak acid, while the concentration of weak base increases.
      $endgroup$
      – Karsten Theis
      3 hours ago












      $begingroup$
      @Andrew_Li I had a typo which I fixed, and I revised my answer to address your follow-up question. No matter which reaction you start with, the ratio of weak base to weak acid concentration will increase, so the pH will increase. You expect that because that is what strong bases do. Because the solution is buffered, the change is much smaller than it would be for pure water, but it still changes a bit in that direction.
      $endgroup$
      – Karsten Theis
      3 hours ago




      $begingroup$
      @Andrew_Li I had a typo which I fixed, and I revised my answer to address your follow-up question. No matter which reaction you start with, the ratio of weak base to weak acid concentration will increase, so the pH will increase. You expect that because that is what strong bases do. Because the solution is buffered, the change is much smaller than it would be for pure water, but it still changes a bit in that direction.
      $endgroup$
      – Karsten Theis
      3 hours ago











      1












      $begingroup$

      The hydroxide ion reacts with the hydronium ion (I hate that name; I prefer the simpler "hydrogen ion") to increase the concentration of water and decrease the concentration of hydrogen ion. To restore the equilibrium, now more acetic acid will ionize, shifting the equilibrium to the right as you have it written above.






      share|improve this answer








      New contributor




      Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$

















        1












        $begingroup$

        The hydroxide ion reacts with the hydronium ion (I hate that name; I prefer the simpler "hydrogen ion") to increase the concentration of water and decrease the concentration of hydrogen ion. To restore the equilibrium, now more acetic acid will ionize, shifting the equilibrium to the right as you have it written above.






        share|improve this answer








        New contributor




        Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$















          1












          1








          1





          $begingroup$

          The hydroxide ion reacts with the hydronium ion (I hate that name; I prefer the simpler "hydrogen ion") to increase the concentration of water and decrease the concentration of hydrogen ion. To restore the equilibrium, now more acetic acid will ionize, shifting the equilibrium to the right as you have it written above.






          share|improve this answer








          New contributor




          Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$



          The hydroxide ion reacts with the hydronium ion (I hate that name; I prefer the simpler "hydrogen ion") to increase the concentration of water and decrease the concentration of hydrogen ion. To restore the equilibrium, now more acetic acid will ionize, shifting the equilibrium to the right as you have it written above.







          share|improve this answer








          New contributor




          Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          share|improve this answer



          share|improve this answer






          New contributor




          Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          answered 5 hours ago









          Charlie AmelottiCharlie Amelotti

          114




          114




          New contributor




          Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          New contributor





          Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          Charlie Amelotti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





















              1












              $begingroup$

              Zhe's comment is not wrong, but I'd say that your teacher isn't either.



              Consider a 0.1 molar solution of acetic acid. The water will be about 55 molar.



              The twist here is that the proton of the hydronium ion is very liable in water. In other words, the proton exchange between water molecules happens very very fast. That is why using a mineral acid makes a solution very conductive. So just based on chance, a hydroxide ion is more likely to reaction with a hydronium ion than an acetic acid molecule. Hence your teacher's remark.



              However Zhe is correct in that it really doesn't make a difference overall. The H+/acetate/acetic acid equilibrium will be established "fairly" quickly.






              share|improve this answer









              $endgroup$

















                1












                $begingroup$

                Zhe's comment is not wrong, but I'd say that your teacher isn't either.



                Consider a 0.1 molar solution of acetic acid. The water will be about 55 molar.



                The twist here is that the proton of the hydronium ion is very liable in water. In other words, the proton exchange between water molecules happens very very fast. That is why using a mineral acid makes a solution very conductive. So just based on chance, a hydroxide ion is more likely to reaction with a hydronium ion than an acetic acid molecule. Hence your teacher's remark.



                However Zhe is correct in that it really doesn't make a difference overall. The H+/acetate/acetic acid equilibrium will be established "fairly" quickly.






                share|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Zhe's comment is not wrong, but I'd say that your teacher isn't either.



                  Consider a 0.1 molar solution of acetic acid. The water will be about 55 molar.



                  The twist here is that the proton of the hydronium ion is very liable in water. In other words, the proton exchange between water molecules happens very very fast. That is why using a mineral acid makes a solution very conductive. So just based on chance, a hydroxide ion is more likely to reaction with a hydronium ion than an acetic acid molecule. Hence your teacher's remark.



                  However Zhe is correct in that it really doesn't make a difference overall. The H+/acetate/acetic acid equilibrium will be established "fairly" quickly.






                  share|improve this answer









                  $endgroup$



                  Zhe's comment is not wrong, but I'd say that your teacher isn't either.



                  Consider a 0.1 molar solution of acetic acid. The water will be about 55 molar.



                  The twist here is that the proton of the hydronium ion is very liable in water. In other words, the proton exchange between water molecules happens very very fast. That is why using a mineral acid makes a solution very conductive. So just based on chance, a hydroxide ion is more likely to reaction with a hydronium ion than an acetic acid molecule. Hence your teacher's remark.



                  However Zhe is correct in that it really doesn't make a difference overall. The H+/acetate/acetic acid equilibrium will be established "fairly" quickly.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 5 hours ago









                  MaxWMaxW

                  15.3k22261




                  15.3k22261




















                      Andrew Li is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Andrew Li is a new contributor. Be nice, and check out our Code of Conduct.












                      Andrew Li is a new contributor. Be nice, and check out our Code of Conduct.











                      Andrew Li is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Chemistry Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111957%2fwhich-acid-base-does-a-strong-base-acid-react-when-added-to-a-buffer-solution%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                      Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                      Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe