Where to find order of arguments for default functions The Next CEO of Stack OverflowHow to pass arguments between functionsPure Functions with Lists as argumentsWhere to find a summary for Q functions?Calling blank arguments using enclosing functionsCalling functions which take their arguments interactivelyDetermining default value from previous argumentsWhere can I access documentation for old versions of Mathematica?Where is documentation for Control`PoleZeroPlot?Functions with Variable Numbers of ArgumentsFunctions definitions with variable arguments

When Does an Atlas Uniquely Define a Manifold?

Need some help with wall behind rangetop

Horror movie/show or scene where a horse creature opens its mouth really wide and devours a man in a stables

Natural language into sentence logic

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

Whats the best way to handle refactoring a big file?

How to use tikz in fbox?

Customer Requests (Sometimes) Drive Me Bonkers!

Why does C# sound extremely flat when saxophone is tuned to G?

Only print output after finding pattern

How to write papers efficiently when English isn't my first language?

How to make a software documentation "officially" citable?

Is it safe to use c_str() on a temporary string?

Are there languages with no euphemisms?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Does it take more energy to get to Venus or to Mars?

Return the Closest Prime Number

How do I go from 300 unfinished/half written blog posts, to published posts?

How to get regions to plot as graphics

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

Why here is plural "We went to the movies last night."

How to make a variable always equal to the result of some calculations?

Where to find order of arguments for default functions

Why do professional authors make "consistency" mistakes? And how to avoid them?



Where to find order of arguments for default functions



The Next CEO of Stack OverflowHow to pass arguments between functionsPure Functions with Lists as argumentsWhere to find a summary for Q functions?Calling blank arguments using enclosing functionsCalling functions which take their arguments interactivelyDetermining default value from previous argumentsWhere can I access documentation for old versions of Mathematica?Where is documentation for Control`PoleZeroPlot?Functions with Variable Numbers of ArgumentsFunctions definitions with variable arguments










3












$begingroup$


Lets take for example the Laplacian. So I want to apply it in spherical coordinates, so I go the the associated documentation page
(https://reference.wolfram.com/language/ref/Laplacian.html?view=all)



Luckily, there is an example Laplacian[1, 1, 1, r, [Theta], [Phi], "Spherical"] // Expand. Yet still, I do not know whether [Theta] is the polar or azimuthal angle.



As far as I can tell nothing in the docs tells you the order of arguments. Is it radius, azimuth, polar angle or is it radius, azimuth, polar angle?



Anyway, I tried



??Laplacian
??"Spherical"


to no avail.




So my question is where do I find the order of arguments of default functions like this? (If not in the documentation).



I can't keep coming to stack exchange for every single function I use.
And trying all the permutations of the arguments until it works is rather tiring.



Is there a more in depth doc than the one I linked to? Also, what is the correct order of arguments in this case.










share|improve this question









$endgroup$
















    3












    $begingroup$


    Lets take for example the Laplacian. So I want to apply it in spherical coordinates, so I go the the associated documentation page
    (https://reference.wolfram.com/language/ref/Laplacian.html?view=all)



    Luckily, there is an example Laplacian[1, 1, 1, r, [Theta], [Phi], "Spherical"] // Expand. Yet still, I do not know whether [Theta] is the polar or azimuthal angle.



    As far as I can tell nothing in the docs tells you the order of arguments. Is it radius, azimuth, polar angle or is it radius, azimuth, polar angle?



    Anyway, I tried



    ??Laplacian
    ??"Spherical"


    to no avail.




    So my question is where do I find the order of arguments of default functions like this? (If not in the documentation).



    I can't keep coming to stack exchange for every single function I use.
    And trying all the permutations of the arguments until it works is rather tiring.



    Is there a more in depth doc than the one I linked to? Also, what is the correct order of arguments in this case.










    share|improve this question









    $endgroup$














      3












      3








      3





      $begingroup$


      Lets take for example the Laplacian. So I want to apply it in spherical coordinates, so I go the the associated documentation page
      (https://reference.wolfram.com/language/ref/Laplacian.html?view=all)



      Luckily, there is an example Laplacian[1, 1, 1, r, [Theta], [Phi], "Spherical"] // Expand. Yet still, I do not know whether [Theta] is the polar or azimuthal angle.



      As far as I can tell nothing in the docs tells you the order of arguments. Is it radius, azimuth, polar angle or is it radius, azimuth, polar angle?



      Anyway, I tried



      ??Laplacian
      ??"Spherical"


      to no avail.




      So my question is where do I find the order of arguments of default functions like this? (If not in the documentation).



      I can't keep coming to stack exchange for every single function I use.
      And trying all the permutations of the arguments until it works is rather tiring.



      Is there a more in depth doc than the one I linked to? Also, what is the correct order of arguments in this case.










      share|improve this question









      $endgroup$




      Lets take for example the Laplacian. So I want to apply it in spherical coordinates, so I go the the associated documentation page
      (https://reference.wolfram.com/language/ref/Laplacian.html?view=all)



      Luckily, there is an example Laplacian[1, 1, 1, r, [Theta], [Phi], "Spherical"] // Expand. Yet still, I do not know whether [Theta] is the polar or azimuthal angle.



      As far as I can tell nothing in the docs tells you the order of arguments. Is it radius, azimuth, polar angle or is it radius, azimuth, polar angle?



      Anyway, I tried



      ??Laplacian
      ??"Spherical"


      to no avail.




      So my question is where do I find the order of arguments of default functions like this? (If not in the documentation).



      I can't keep coming to stack exchange for every single function I use.
      And trying all the permutations of the arguments until it works is rather tiring.



      Is there a more in depth doc than the one I linked to? Also, what is the correct order of arguments in this case.







      functions documentation vector-calculus






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 8 hours ago









      Ion SmeIon Sme

      726




      726




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          The "Details" section of that page refers to CoordinateChartData. Now this is a bit dense, but it contains everything you need. First of all, you can try to find out what kind of things you can find out about spherical coordinates:



          In[9]:= CoordinateChartData["Spherical", "Properties"]



          Out[9]= "AlternateCoordinateNames", "CoordinateRangeAssumptions",
          "Dimension", "InverseMetric", "Metric", "ParameterRangeAssumptions",
          "ScaleFactors", "StandardCoordinateNames", "StandardName",
          "VolumeFactor"




          Many functions in Mathematica have a "Properties" property that allows you to figure out what you can ask for. It's useful to keep that in mind.



          Let's first find out what the standard names are for the coordinates:



          In[10]:= CoordinateChartData["Spherical", "StandardCoordinateNames"]



          Out[10]= "r", "θ", "φ"




          There is also the "CoordinateRangeAssumptions" property which gives you the constraints on a given set of parameters, so let's use the parameter names we just got:



          In[11]:= CoordinateChartData["Spherical", "CoordinateRangeAssumptions", %]



          Out[11]= "r" > 0 && 0 < "θ" < π && -π < "φ" <= π




          Now you know exactly which angle is which, since the polar angle is the one that ranges from 0 to π.



          Another suggestion is to look at the references on the documentation page of Laplacian. For example, there is a linked tutorial about vector analysis which also mentions CoordinateChartData.



          Alternatively, sometimes you just need to click around a bit among functions and symbols that seem related to what you need to know. For example, the linked guide about vector analysis lists the function ToSphericalCoordinates which has a helpful graphic in the Details section. Guides are quite useful for finding your way around since they tend to group functions and symbols by theme or application.






          share|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194135%2fwhere-to-find-order-of-arguments-for-default-functions%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            7












            $begingroup$

            The "Details" section of that page refers to CoordinateChartData. Now this is a bit dense, but it contains everything you need. First of all, you can try to find out what kind of things you can find out about spherical coordinates:



            In[9]:= CoordinateChartData["Spherical", "Properties"]



            Out[9]= "AlternateCoordinateNames", "CoordinateRangeAssumptions",
            "Dimension", "InverseMetric", "Metric", "ParameterRangeAssumptions",
            "ScaleFactors", "StandardCoordinateNames", "StandardName",
            "VolumeFactor"




            Many functions in Mathematica have a "Properties" property that allows you to figure out what you can ask for. It's useful to keep that in mind.



            Let's first find out what the standard names are for the coordinates:



            In[10]:= CoordinateChartData["Spherical", "StandardCoordinateNames"]



            Out[10]= "r", "θ", "φ"




            There is also the "CoordinateRangeAssumptions" property which gives you the constraints on a given set of parameters, so let's use the parameter names we just got:



            In[11]:= CoordinateChartData["Spherical", "CoordinateRangeAssumptions", %]



            Out[11]= "r" > 0 && 0 < "θ" < π && -π < "φ" <= π




            Now you know exactly which angle is which, since the polar angle is the one that ranges from 0 to π.



            Another suggestion is to look at the references on the documentation page of Laplacian. For example, there is a linked tutorial about vector analysis which also mentions CoordinateChartData.



            Alternatively, sometimes you just need to click around a bit among functions and symbols that seem related to what you need to know. For example, the linked guide about vector analysis lists the function ToSphericalCoordinates which has a helpful graphic in the Details section. Guides are quite useful for finding your way around since they tend to group functions and symbols by theme or application.






            share|improve this answer











            $endgroup$

















              7












              $begingroup$

              The "Details" section of that page refers to CoordinateChartData. Now this is a bit dense, but it contains everything you need. First of all, you can try to find out what kind of things you can find out about spherical coordinates:



              In[9]:= CoordinateChartData["Spherical", "Properties"]



              Out[9]= "AlternateCoordinateNames", "CoordinateRangeAssumptions",
              "Dimension", "InverseMetric", "Metric", "ParameterRangeAssumptions",
              "ScaleFactors", "StandardCoordinateNames", "StandardName",
              "VolumeFactor"




              Many functions in Mathematica have a "Properties" property that allows you to figure out what you can ask for. It's useful to keep that in mind.



              Let's first find out what the standard names are for the coordinates:



              In[10]:= CoordinateChartData["Spherical", "StandardCoordinateNames"]



              Out[10]= "r", "θ", "φ"




              There is also the "CoordinateRangeAssumptions" property which gives you the constraints on a given set of parameters, so let's use the parameter names we just got:



              In[11]:= CoordinateChartData["Spherical", "CoordinateRangeAssumptions", %]



              Out[11]= "r" > 0 && 0 < "θ" < π && -π < "φ" <= π




              Now you know exactly which angle is which, since the polar angle is the one that ranges from 0 to π.



              Another suggestion is to look at the references on the documentation page of Laplacian. For example, there is a linked tutorial about vector analysis which also mentions CoordinateChartData.



              Alternatively, sometimes you just need to click around a bit among functions and symbols that seem related to what you need to know. For example, the linked guide about vector analysis lists the function ToSphericalCoordinates which has a helpful graphic in the Details section. Guides are quite useful for finding your way around since they tend to group functions and symbols by theme or application.






              share|improve this answer











              $endgroup$















                7












                7








                7





                $begingroup$

                The "Details" section of that page refers to CoordinateChartData. Now this is a bit dense, but it contains everything you need. First of all, you can try to find out what kind of things you can find out about spherical coordinates:



                In[9]:= CoordinateChartData["Spherical", "Properties"]



                Out[9]= "AlternateCoordinateNames", "CoordinateRangeAssumptions",
                "Dimension", "InverseMetric", "Metric", "ParameterRangeAssumptions",
                "ScaleFactors", "StandardCoordinateNames", "StandardName",
                "VolumeFactor"




                Many functions in Mathematica have a "Properties" property that allows you to figure out what you can ask for. It's useful to keep that in mind.



                Let's first find out what the standard names are for the coordinates:



                In[10]:= CoordinateChartData["Spherical", "StandardCoordinateNames"]



                Out[10]= "r", "θ", "φ"




                There is also the "CoordinateRangeAssumptions" property which gives you the constraints on a given set of parameters, so let's use the parameter names we just got:



                In[11]:= CoordinateChartData["Spherical", "CoordinateRangeAssumptions", %]



                Out[11]= "r" > 0 && 0 < "θ" < π && -π < "φ" <= π




                Now you know exactly which angle is which, since the polar angle is the one that ranges from 0 to π.



                Another suggestion is to look at the references on the documentation page of Laplacian. For example, there is a linked tutorial about vector analysis which also mentions CoordinateChartData.



                Alternatively, sometimes you just need to click around a bit among functions and symbols that seem related to what you need to know. For example, the linked guide about vector analysis lists the function ToSphericalCoordinates which has a helpful graphic in the Details section. Guides are quite useful for finding your way around since they tend to group functions and symbols by theme or application.






                share|improve this answer











                $endgroup$



                The "Details" section of that page refers to CoordinateChartData. Now this is a bit dense, but it contains everything you need. First of all, you can try to find out what kind of things you can find out about spherical coordinates:



                In[9]:= CoordinateChartData["Spherical", "Properties"]



                Out[9]= "AlternateCoordinateNames", "CoordinateRangeAssumptions",
                "Dimension", "InverseMetric", "Metric", "ParameterRangeAssumptions",
                "ScaleFactors", "StandardCoordinateNames", "StandardName",
                "VolumeFactor"




                Many functions in Mathematica have a "Properties" property that allows you to figure out what you can ask for. It's useful to keep that in mind.



                Let's first find out what the standard names are for the coordinates:



                In[10]:= CoordinateChartData["Spherical", "StandardCoordinateNames"]



                Out[10]= "r", "θ", "φ"




                There is also the "CoordinateRangeAssumptions" property which gives you the constraints on a given set of parameters, so let's use the parameter names we just got:



                In[11]:= CoordinateChartData["Spherical", "CoordinateRangeAssumptions", %]



                Out[11]= "r" > 0 && 0 < "θ" < π && -π < "φ" <= π




                Now you know exactly which angle is which, since the polar angle is the one that ranges from 0 to π.



                Another suggestion is to look at the references on the documentation page of Laplacian. For example, there is a linked tutorial about vector analysis which also mentions CoordinateChartData.



                Alternatively, sometimes you just need to click around a bit among functions and symbols that seem related to what you need to know. For example, the linked guide about vector analysis lists the function ToSphericalCoordinates which has a helpful graphic in the Details section. Guides are quite useful for finding your way around since they tend to group functions and symbols by theme or application.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 6 hours ago

























                answered 7 hours ago









                Sjoerd SmitSjoerd Smit

                4,215816




                4,215816



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194135%2fwhere-to-find-order-of-arguments-for-default-functions%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe