If the empty set is a subset of every set, why write … ∪ ∅? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is the void set (∅) a proper subset of every set?Direct proof of empty set being subset of every setIf the empty set is a subset of every set, why isn't $emptyset,a=a$?Why "to every set and to every statement p(x), there exists p(x)$?Should the empty set be included in this example?What subset am I missing from a set containing the empty set and a set with the empty set?Union on the empty set and the set containing the empty setWhy the empty set is a subset of every set?Question about the empty setUnderstanding empty set, set with empty set and set with set of empty set.

How to copy the contents of all files with a certain name into a new file?

"... to apply for a visa" or "... and applied for a visa"?

Can the prologue be the backstory of your main character?

Did the new image of black hole confirm the general theory of relativity?

Does the AirPods case need to be around while listening via an iOS Device?

Relations between two reciprocal partial derivatives?

What are these Gizmos at Izaña Atmospheric Research Center in Spain?

Derivation tree not rendering

How can I protect witches in combat who wear limited clothing?

What is special about square numbers here?

Keeping a retro style to sci-fi spaceships?

Why can't devices on different VLANs, but on the same subnet, communicate?

Scientific Reports - Significant Figures

how can a perfect fourth interval be considered either consonant or dissonant?

Finding the path in a graph from A to B then back to A with a minimum of shared edges

Can a novice safely splice in wire to lengthen 5V charging cable?

Was credit for the black hole image misattributed?

Am I ethically obligated to go into work on an off day if the reason is sudden?

How does ice melt when immersed in water

How did passengers keep warm on sail ships?

Difference between "generating set" and free product?

What can I do if neighbor is blocking my solar panels intentionally?

A pet rabbit called Belle

Does Parliament hold absolute power in the UK?



If the empty set is a subset of every set, why write … ∪ ∅?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is the void set (∅) a proper subset of every set?Direct proof of empty set being subset of every setIf the empty set is a subset of every set, why isn't $emptyset,a=a$?Why "to every set and to every statement p(x), there exists p(x)$?Should the empty set be included in this example?What subset am I missing from a set containing the empty set and a set with the empty set?Union on the empty set and the set containing the empty setWhy the empty set is a subset of every set?Question about the empty setUnderstanding empty set, set with empty set and set with set of empty set.










7












$begingroup$


I met the notation $ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $



I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $ appear $colorredcupemptyset$?










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    I met the notation $ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $



    I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $ appear $colorredcupemptyset$?










    share|cite|improve this question











    $endgroup$














      7












      7








      7





      $begingroup$


      I met the notation $ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $



      I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $ appear $colorredcupemptyset$?










      share|cite|improve this question











      $endgroup$




      I met the notation $ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $



      I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $ appear $colorredcupemptyset$?







      measure-theory elementary-set-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 45 mins ago









      LarsH

      555624




      555624










      asked 7 hours ago









      Ica SanduIca Sandu

      1379




      1379




















          4 Answers
          4






          active

          oldest

          votes


















          22












          $begingroup$

          It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
          It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



          Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$






          share|cite|improve this answer











          $endgroup$




















            5












            $begingroup$

            Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).






            share|cite|improve this answer









            $endgroup$




















              5












              $begingroup$

              The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.






              share|cite|improve this answer











              $endgroup$




















                3












                $begingroup$

                It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$






                share|cite|improve this answer









                $endgroup$













                  Your Answer








                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "69"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader:
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  ,
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );













                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186480%2fif-the-empty-set-is-a-subset-of-every-set-why-write-%25e2%2588%25aa-%25e2%2588%2585%23new-answer', 'question_page');

                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  22












                  $begingroup$

                  It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
                  It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



                  Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$






                  share|cite|improve this answer











                  $endgroup$

















                    22












                    $begingroup$

                    It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
                    It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



                    Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$






                    share|cite|improve this answer











                    $endgroup$















                      22












                      22








                      22





                      $begingroup$

                      It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
                      It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



                      Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$






                      share|cite|improve this answer











                      $endgroup$



                      It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
                      It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



                      Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 6 hours ago

























                      answered 7 hours ago









                      CornmanCornman

                      3,69321231




                      3,69321231





















                          5












                          $begingroup$

                          Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).






                          share|cite|improve this answer









                          $endgroup$

















                            5












                            $begingroup$

                            Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).






                            share|cite|improve this answer









                            $endgroup$















                              5












                              5








                              5





                              $begingroup$

                              Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).






                              share|cite|improve this answer









                              $endgroup$



                              Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 7 hours ago









                              José Carlos SantosJosé Carlos Santos

                              174k23134243




                              174k23134243





















                                  5












                                  $begingroup$

                                  The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.






                                  share|cite|improve this answer











                                  $endgroup$

















                                    5












                                    $begingroup$

                                    The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.






                                    share|cite|improve this answer











                                    $endgroup$















                                      5












                                      5








                                      5





                                      $begingroup$

                                      The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.






                                      share|cite|improve this answer











                                      $endgroup$



                                      The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited 5 hours ago

























                                      answered 5 hours ago









                                      CiaPanCiaPan

                                      10.3k11248




                                      10.3k11248





















                                          3












                                          $begingroup$

                                          It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                                          As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$






                                          share|cite|improve this answer









                                          $endgroup$

















                                            3












                                            $begingroup$

                                            It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                                            As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$






                                            share|cite|improve this answer









                                            $endgroup$















                                              3












                                              3








                                              3





                                              $begingroup$

                                              It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                                              As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$






                                              share|cite|improve this answer









                                              $endgroup$



                                              It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                                              As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 7 hours ago









                                              MelodyMelody

                                              1,21312




                                              1,21312



























                                                  draft saved

                                                  draft discarded
















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid


                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.

                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186480%2fif-the-empty-set-is-a-subset-of-every-set-why-write-%25e2%2588%25aa-%25e2%2588%2585%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                                                  Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                                                  Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр