Reference request: Oldest number theory books with (unsolved) exercises? The 2019 Stack Overflow Developer Survey Results Are InClassical Enumerative Geometry ReferencesHow does “modern” number theory contribute to further understanding of $mathbbN$?Divergent Series as a topic of researchGeometric intuition for Fontaine-Wintenberger?Classification of singularities of plane curves of fixed degree (reference request)Reference request: Oldest calculus, real analysis books with exercises?Reference request: Oldest linear algebra books with exercises?Reference request for bounds of $n$-th compositeReference request: Oldest complex analysis books with (unsolved) exercises?Reference request: Oldest (non-analytic) geometry books with (unsolved) exercises?

Reference request: Oldest number theory books with (unsolved) exercises?



The 2019 Stack Overflow Developer Survey Results Are InClassical Enumerative Geometry ReferencesHow does “modern” number theory contribute to further understanding of $mathbbN$?Divergent Series as a topic of researchGeometric intuition for Fontaine-Wintenberger?Classification of singularities of plane curves of fixed degree (reference request)Reference request: Oldest calculus, real analysis books with exercises?Reference request: Oldest linear algebra books with exercises?Reference request for bounds of $n$-th compositeReference request: Oldest complex analysis books with (unsolved) exercises?Reference request: Oldest (non-analytic) geometry books with (unsolved) exercises?










6












$begingroup$


Per the title, what are some of the oldest number theory books out there with (unsolved) exercises? Maybe there are some hidden gems from before the 20th century out there. I am already aware of the books of Dickson and Hardy.



Motivation for this question. Some person came up to me before class and asked, are you the person asking the ridiculous "oldest book with exercises" questions on MO? I said yes, and he asked I could do one on number theory. So here we are.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
    $endgroup$
    – darij grinberg
    12 hours ago






  • 1




    $begingroup$
    Not sure if there are exercises: books.google.com/books/about/…
    $endgroup$
    – Cherng-tiao Perng
    12 hours ago







  • 1




    $begingroup$
    I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
    $endgroup$
    – EFinat-S
    6 hours ago
















6












$begingroup$


Per the title, what are some of the oldest number theory books out there with (unsolved) exercises? Maybe there are some hidden gems from before the 20th century out there. I am already aware of the books of Dickson and Hardy.



Motivation for this question. Some person came up to me before class and asked, are you the person asking the ridiculous "oldest book with exercises" questions on MO? I said yes, and he asked I could do one on number theory. So here we are.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
    $endgroup$
    – darij grinberg
    12 hours ago






  • 1




    $begingroup$
    Not sure if there are exercises: books.google.com/books/about/…
    $endgroup$
    – Cherng-tiao Perng
    12 hours ago







  • 1




    $begingroup$
    I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
    $endgroup$
    – EFinat-S
    6 hours ago














6












6








6


1



$begingroup$


Per the title, what are some of the oldest number theory books out there with (unsolved) exercises? Maybe there are some hidden gems from before the 20th century out there. I am already aware of the books of Dickson and Hardy.



Motivation for this question. Some person came up to me before class and asked, are you the person asking the ridiculous "oldest book with exercises" questions on MO? I said yes, and he asked I could do one on number theory. So here we are.










share|cite|improve this question











$endgroup$




Per the title, what are some of the oldest number theory books out there with (unsolved) exercises? Maybe there are some hidden gems from before the 20th century out there. I am already aware of the books of Dickson and Hardy.



Motivation for this question. Some person came up to me before class and asked, are you the person asking the ridiculous "oldest book with exercises" questions on MO? I said yes, and he asked I could do one on number theory. So here we are.







nt.number-theory reference-request






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 12 hours ago







Get Off The Internet

















asked 12 hours ago









Get Off The InternetGet Off The Internet

379320




379320







  • 2




    $begingroup$
    Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
    $endgroup$
    – darij grinberg
    12 hours ago






  • 1




    $begingroup$
    Not sure if there are exercises: books.google.com/books/about/…
    $endgroup$
    – Cherng-tiao Perng
    12 hours ago







  • 1




    $begingroup$
    I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
    $endgroup$
    – EFinat-S
    6 hours ago













  • 2




    $begingroup$
    Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
    $endgroup$
    – darij grinberg
    12 hours ago






  • 1




    $begingroup$
    Not sure if there are exercises: books.google.com/books/about/…
    $endgroup$
    – Cherng-tiao Perng
    12 hours ago







  • 1




    $begingroup$
    I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
    $endgroup$
    – EFinat-S
    6 hours ago








2




2




$begingroup$
Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
$endgroup$
– darij grinberg
12 hours ago




$begingroup$
Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
$endgroup$
– darij grinberg
12 hours ago




1




1




$begingroup$
Not sure if there are exercises: books.google.com/books/about/…
$endgroup$
– Cherng-tiao Perng
12 hours ago





$begingroup$
Not sure if there are exercises: books.google.com/books/about/…
$endgroup$
– Cherng-tiao Perng
12 hours ago





1




1




$begingroup$
I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
$endgroup$
– EFinat-S
6 hours ago





$begingroup$
I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
$endgroup$
– EFinat-S
6 hours ago











2 Answers
2






active

oldest

votes


















10












$begingroup$

I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



Apropos of the exercises in this monograph, one can read the following in the preface:




Numerous problems are supplied throughout the text. These have been
selected with great care so as to serve as excellent exercises for the
student's introductory training in the methods of number theory and to
afford at the same time a further collection of useful results. The
exercises with a star are more difficult than the others; they will
doubtless appeal to the best students.




Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




  1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
    unknown.



Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
    $endgroup$
    – Gerry Myerson
    8 hours ago










  • $begingroup$
    Is it a well-known problem that many number theory experts have seriously tried but failed to solve?
    $endgroup$
    – user21820
    51 mins ago






  • 1




    $begingroup$
    @user, it is a well-known problem. Since we seldom publish our failures, it is hard to know how many experts may have seriously tried but failed to settle it.
    $endgroup$
    – Gerry Myerson
    9 mins ago










  • $begingroup$
    @GerryMyerson: Okay thanks for the information!
    $endgroup$
    – user21820
    8 mins ago










  • $begingroup$
    Here, anyway, is one failed attempt to find a counterexample: ams.org/journals/mcom/1994-63-207/S0025-5718-1994-1226815-3 Aaron Schlafly and Stan Wagon, Carmichael's conjecture on the Euler function is valid below $ 10^10,000,000$, Math. Comp. 63 (1994), 415-419. See also B39 in Guy, Unsolved Problems In Number Theory.
    $endgroup$
    – Gerry Myerson
    5 mins ago



















4












$begingroup$

The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327697%2freference-request-oldest-number-theory-books-with-unsolved-exercises%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



    Apropos of the exercises in this monograph, one can read the following in the preface:




    Numerous problems are supplied throughout the text. These have been
    selected with great care so as to serve as excellent exercises for the
    student's introductory training in the methods of number theory and to
    afford at the same time a further collection of useful results. The
    exercises with a star are more difficult than the others; they will
    doubtless appeal to the best students.




    Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




    1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
      unknown.



    Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



    S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
      $endgroup$
      – Gerry Myerson
      8 hours ago










    • $begingroup$
      Is it a well-known problem that many number theory experts have seriously tried but failed to solve?
      $endgroup$
      – user21820
      51 mins ago






    • 1




      $begingroup$
      @user, it is a well-known problem. Since we seldom publish our failures, it is hard to know how many experts may have seriously tried but failed to settle it.
      $endgroup$
      – Gerry Myerson
      9 mins ago










    • $begingroup$
      @GerryMyerson: Okay thanks for the information!
      $endgroup$
      – user21820
      8 mins ago










    • $begingroup$
      Here, anyway, is one failed attempt to find a counterexample: ams.org/journals/mcom/1994-63-207/S0025-5718-1994-1226815-3 Aaron Schlafly and Stan Wagon, Carmichael's conjecture on the Euler function is valid below $ 10^10,000,000$, Math. Comp. 63 (1994), 415-419. See also B39 in Guy, Unsolved Problems In Number Theory.
      $endgroup$
      – Gerry Myerson
      5 mins ago
















    10












    $begingroup$

    I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



    Apropos of the exercises in this monograph, one can read the following in the preface:




    Numerous problems are supplied throughout the text. These have been
    selected with great care so as to serve as excellent exercises for the
    student's introductory training in the methods of number theory and to
    afford at the same time a further collection of useful results. The
    exercises with a star are more difficult than the others; they will
    doubtless appeal to the best students.




    Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




    1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
      unknown.



    Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



    S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
      $endgroup$
      – Gerry Myerson
      8 hours ago










    • $begingroup$
      Is it a well-known problem that many number theory experts have seriously tried but failed to solve?
      $endgroup$
      – user21820
      51 mins ago






    • 1




      $begingroup$
      @user, it is a well-known problem. Since we seldom publish our failures, it is hard to know how many experts may have seriously tried but failed to settle it.
      $endgroup$
      – Gerry Myerson
      9 mins ago










    • $begingroup$
      @GerryMyerson: Okay thanks for the information!
      $endgroup$
      – user21820
      8 mins ago










    • $begingroup$
      Here, anyway, is one failed attempt to find a counterexample: ams.org/journals/mcom/1994-63-207/S0025-5718-1994-1226815-3 Aaron Schlafly and Stan Wagon, Carmichael's conjecture on the Euler function is valid below $ 10^10,000,000$, Math. Comp. 63 (1994), 415-419. See also B39 in Guy, Unsolved Problems In Number Theory.
      $endgroup$
      – Gerry Myerson
      5 mins ago














    10












    10








    10





    $begingroup$

    I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



    Apropos of the exercises in this monograph, one can read the following in the preface:




    Numerous problems are supplied throughout the text. These have been
    selected with great care so as to serve as excellent exercises for the
    student's introductory training in the methods of number theory and to
    afford at the same time a further collection of useful results. The
    exercises with a star are more difficult than the others; they will
    doubtless appeal to the best students.




    Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




    1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
      unknown.



    Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



    S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.






    share|cite|improve this answer











    $endgroup$



    I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



    Apropos of the exercises in this monograph, one can read the following in the preface:




    Numerous problems are supplied throughout the text. These have been
    selected with great care so as to serve as excellent exercises for the
    student's introductory training in the methods of number theory and to
    afford at the same time a further collection of useful results. The
    exercises with a star are more difficult than the others; they will
    doubtless appeal to the best students.




    Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




    1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
      unknown.



    Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



    S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 6 hours ago

























    answered 9 hours ago









    José Hdz. Stgo.José Hdz. Stgo.

    5,36734878




    5,36734878







    • 1




      $begingroup$
      Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
      $endgroup$
      – Gerry Myerson
      8 hours ago










    • $begingroup$
      Is it a well-known problem that many number theory experts have seriously tried but failed to solve?
      $endgroup$
      – user21820
      51 mins ago






    • 1




      $begingroup$
      @user, it is a well-known problem. Since we seldom publish our failures, it is hard to know how many experts may have seriously tried but failed to settle it.
      $endgroup$
      – Gerry Myerson
      9 mins ago










    • $begingroup$
      @GerryMyerson: Okay thanks for the information!
      $endgroup$
      – user21820
      8 mins ago










    • $begingroup$
      Here, anyway, is one failed attempt to find a counterexample: ams.org/journals/mcom/1994-63-207/S0025-5718-1994-1226815-3 Aaron Schlafly and Stan Wagon, Carmichael's conjecture on the Euler function is valid below $ 10^10,000,000$, Math. Comp. 63 (1994), 415-419. See also B39 in Guy, Unsolved Problems In Number Theory.
      $endgroup$
      – Gerry Myerson
      5 mins ago













    • 1




      $begingroup$
      Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
      $endgroup$
      – Gerry Myerson
      8 hours ago










    • $begingroup$
      Is it a well-known problem that many number theory experts have seriously tried but failed to solve?
      $endgroup$
      – user21820
      51 mins ago






    • 1




      $begingroup$
      @user, it is a well-known problem. Since we seldom publish our failures, it is hard to know how many experts may have seriously tried but failed to settle it.
      $endgroup$
      – Gerry Myerson
      9 mins ago










    • $begingroup$
      @GerryMyerson: Okay thanks for the information!
      $endgroup$
      – user21820
      8 mins ago










    • $begingroup$
      Here, anyway, is one failed attempt to find a counterexample: ams.org/journals/mcom/1994-63-207/S0025-5718-1994-1226815-3 Aaron Schlafly and Stan Wagon, Carmichael's conjecture on the Euler function is valid below $ 10^10,000,000$, Math. Comp. 63 (1994), 415-419. See also B39 in Guy, Unsolved Problems In Number Theory.
      $endgroup$
      – Gerry Myerson
      5 mins ago








    1




    1




    $begingroup$
    Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
    $endgroup$
    – Gerry Myerson
    8 hours ago




    $begingroup$
    Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
    $endgroup$
    – Gerry Myerson
    8 hours ago












    $begingroup$
    Is it a well-known problem that many number theory experts have seriously tried but failed to solve?
    $endgroup$
    – user21820
    51 mins ago




    $begingroup$
    Is it a well-known problem that many number theory experts have seriously tried but failed to solve?
    $endgroup$
    – user21820
    51 mins ago




    1




    1




    $begingroup$
    @user, it is a well-known problem. Since we seldom publish our failures, it is hard to know how many experts may have seriously tried but failed to settle it.
    $endgroup$
    – Gerry Myerson
    9 mins ago




    $begingroup$
    @user, it is a well-known problem. Since we seldom publish our failures, it is hard to know how many experts may have seriously tried but failed to settle it.
    $endgroup$
    – Gerry Myerson
    9 mins ago












    $begingroup$
    @GerryMyerson: Okay thanks for the information!
    $endgroup$
    – user21820
    8 mins ago




    $begingroup$
    @GerryMyerson: Okay thanks for the information!
    $endgroup$
    – user21820
    8 mins ago












    $begingroup$
    Here, anyway, is one failed attempt to find a counterexample: ams.org/journals/mcom/1994-63-207/S0025-5718-1994-1226815-3 Aaron Schlafly and Stan Wagon, Carmichael's conjecture on the Euler function is valid below $ 10^10,000,000$, Math. Comp. 63 (1994), 415-419. See also B39 in Guy, Unsolved Problems In Number Theory.
    $endgroup$
    – Gerry Myerson
    5 mins ago





    $begingroup$
    Here, anyway, is one failed attempt to find a counterexample: ams.org/journals/mcom/1994-63-207/S0025-5718-1994-1226815-3 Aaron Schlafly and Stan Wagon, Carmichael's conjecture on the Euler function is valid below $ 10^10,000,000$, Math. Comp. 63 (1994), 415-419. See also B39 in Guy, Unsolved Problems In Number Theory.
    $endgroup$
    – Gerry Myerson
    5 mins ago












    4












    $begingroup$

    The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.






        share|cite|improve this answer









        $endgroup$



        The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 5 hours ago









        EFinat-SEFinat-S

        1,2241417




        1,2241417



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327697%2freference-request-oldest-number-theory-books-with-unsolved-exercises%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

            Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

            Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр