Why is the Constellation's nose gear so long? The 2019 Stack Overflow Developer Survey Results Are InWhat are the advantages of more than 4 propeller blades?Why does landing gear retract with an offset?Is it possible to control an aircraft on the runway if the nose gear collapses?Why is the Eurofighters nose gear door shorter than the bay?Why does landing gear extend backwards and retract forwards?How can I calculate the force on the nose gear at landing?What is the typical weight distribution ratio between nose gear and main gear?Why is the nose landing gear of a Rutan Vari Eze up during parking?Which is the technically correct term: Nose Gear or Nose Landing Gear?What is this item on the nosewheel of the Sukhoi PAK-FA?How long does the gear extension/retraction takes on the ATR-42?

How technical should a Scrum Master be to effectively remove impediments?

Does a dangling wire really electrocute me if I'm standing in water?

What is the most effective way of iterating a std::vector and why?

Who coined the term "madman theory"?

How to type this arrow in math mode?

Why hard-Brexiteers don't insist on a hard border to prevent illegal immigration after Brexit?

Why not take a picture of a closer black hole?

Pokemon Turn Based battle (Python)

One word riddle: Vowel in the middle

Is bread bad for ducks?

Is flight data recorder erased after every flight?

What does ひと匙 mean in this manga and has it been used colloquially?

Distributing a matrix

Is this app Icon Browser Safe/Legit?

Is a "Democratic" Oligarchy-Style System Possible?

Why was M87 targetted for the Event Horizon Telescope instead of Sagittarius A*?

Does the shape of a die affect the probability of a number being rolled?

Why is the Constellation's nose gear so long?

Delete all lines which don't have n characters before delimiter

What tool would a Roman-age civilization have for the breaking of silver and other metals into dust?

Resizing object distorts it (Illustrator CC 2018)

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

slides for 30min~1hr skype tenure track application interview

Am I thawing this London Broil safely?



Why is the Constellation's nose gear so long?



The 2019 Stack Overflow Developer Survey Results Are InWhat are the advantages of more than 4 propeller blades?Why does landing gear retract with an offset?Is it possible to control an aircraft on the runway if the nose gear collapses?Why is the Eurofighters nose gear door shorter than the bay?Why does landing gear extend backwards and retract forwards?How can I calculate the force on the nose gear at landing?What is the typical weight distribution ratio between nose gear and main gear?Why is the nose landing gear of a Rutan Vari Eze up during parking?Which is the technically correct term: Nose Gear or Nose Landing Gear?What is this item on the nosewheel of the Sukhoi PAK-FA?How long does the gear extension/retraction takes on the ATR-42?










3












$begingroup$


The Lockheed Constellation has an enormously long nose gear, which causes the aircraft to slant appreciably backwards when sitting on the ground:



L-049



tilted L-049



(Image by Greg and Cindy at Flickr, modified by Cobatfor at Wikimedia Commons.)



L-649



tilted L-649



(Image by the San Diego Air and Space Museum, via Flickr, via Wikimedia Commons.)



L-749



tilted L-749



(Image by RuthAS at Wikimedia Commons.)



L-1049



tilted L-1049



(Image by RuthAS at Wikimedia Commons.)



L-1649



tilted L-1649



(Image by Robert Togni at Flickr, via JuergenKlueser at Wikimedia Commons. Note that, due to the gigantic nose gear, the fuselage is approximately level, despite the ground sloping downwards considerably towards the aircraft's nose.)



In contrast, other airliners of the era had a much-less-ridiculous nose gear length, like the DC-7:



DC-7



(Image by Ted Quackenbush at airliners.net, modified by Fæ at Wikimedia Commons.)



and the Stratocruiser:



Boeing 377



(Image by Bill Larkins at Flickr, via Wikimedia Commons.)



Why is the Constellation's nose gear so much longer?










share|improve this question









$endgroup$
















    3












    $begingroup$


    The Lockheed Constellation has an enormously long nose gear, which causes the aircraft to slant appreciably backwards when sitting on the ground:



    L-049



    tilted L-049



    (Image by Greg and Cindy at Flickr, modified by Cobatfor at Wikimedia Commons.)



    L-649



    tilted L-649



    (Image by the San Diego Air and Space Museum, via Flickr, via Wikimedia Commons.)



    L-749



    tilted L-749



    (Image by RuthAS at Wikimedia Commons.)



    L-1049



    tilted L-1049



    (Image by RuthAS at Wikimedia Commons.)



    L-1649



    tilted L-1649



    (Image by Robert Togni at Flickr, via JuergenKlueser at Wikimedia Commons. Note that, due to the gigantic nose gear, the fuselage is approximately level, despite the ground sloping downwards considerably towards the aircraft's nose.)



    In contrast, other airliners of the era had a much-less-ridiculous nose gear length, like the DC-7:



    DC-7



    (Image by Ted Quackenbush at airliners.net, modified by Fæ at Wikimedia Commons.)



    and the Stratocruiser:



    Boeing 377



    (Image by Bill Larkins at Flickr, via Wikimedia Commons.)



    Why is the Constellation's nose gear so much longer?










    share|improve this question









    $endgroup$














      3












      3








      3





      $begingroup$


      The Lockheed Constellation has an enormously long nose gear, which causes the aircraft to slant appreciably backwards when sitting on the ground:



      L-049



      tilted L-049



      (Image by Greg and Cindy at Flickr, modified by Cobatfor at Wikimedia Commons.)



      L-649



      tilted L-649



      (Image by the San Diego Air and Space Museum, via Flickr, via Wikimedia Commons.)



      L-749



      tilted L-749



      (Image by RuthAS at Wikimedia Commons.)



      L-1049



      tilted L-1049



      (Image by RuthAS at Wikimedia Commons.)



      L-1649



      tilted L-1649



      (Image by Robert Togni at Flickr, via JuergenKlueser at Wikimedia Commons. Note that, due to the gigantic nose gear, the fuselage is approximately level, despite the ground sloping downwards considerably towards the aircraft's nose.)



      In contrast, other airliners of the era had a much-less-ridiculous nose gear length, like the DC-7:



      DC-7



      (Image by Ted Quackenbush at airliners.net, modified by Fæ at Wikimedia Commons.)



      and the Stratocruiser:



      Boeing 377



      (Image by Bill Larkins at Flickr, via Wikimedia Commons.)



      Why is the Constellation's nose gear so much longer?










      share|improve this question









      $endgroup$




      The Lockheed Constellation has an enormously long nose gear, which causes the aircraft to slant appreciably backwards when sitting on the ground:



      L-049



      tilted L-049



      (Image by Greg and Cindy at Flickr, modified by Cobatfor at Wikimedia Commons.)



      L-649



      tilted L-649



      (Image by the San Diego Air and Space Museum, via Flickr, via Wikimedia Commons.)



      L-749



      tilted L-749



      (Image by RuthAS at Wikimedia Commons.)



      L-1049



      tilted L-1049



      (Image by RuthAS at Wikimedia Commons.)



      L-1649



      tilted L-1649



      (Image by Robert Togni at Flickr, via JuergenKlueser at Wikimedia Commons. Note that, due to the gigantic nose gear, the fuselage is approximately level, despite the ground sloping downwards considerably towards the aircraft's nose.)



      In contrast, other airliners of the era had a much-less-ridiculous nose gear length, like the DC-7:



      DC-7



      (Image by Ted Quackenbush at airliners.net, modified by Fæ at Wikimedia Commons.)



      and the Stratocruiser:



      Boeing 377



      (Image by Bill Larkins at Flickr, via Wikimedia Commons.)



      Why is the Constellation's nose gear so much longer?







      landing-gear lockheed-constellation






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 7 hours ago









      SeanSean

      5,95532874




      5,95532874




















          3 Answers
          3






          active

          oldest

          votes


















          5












          $begingroup$

          The Connie's fuselage has a subtle S shaped contour which was intended to conform somewhat to the upwash ahead of the wing and downwash aft of the wing, with a final upturn at the end to place the horizontal tail at the desired vertical location.



          enter image description here



          They also tapered the fuselage to the smallest cross sectional area possible at the nose, to part the air gently you might say, so the bottom ends up sloping up toward the nose.



          Then you have main gear legs that are fairly long because the R3350's propellers are quite large.



          The wing incidence is set to optimize the fuselage curvature's presentation into the airflow in cruise.



          At the same time, you want to have wing chord in a certain desirable AOA range sitting on the ground, and you want to keep the tail from sitting too high (the Connie has the 3 surfaces to keep the vertical height of the tail low enough to fit the common hangars of the day).



          Combine all those factors together and you end up having to the make the strut really long, and ending up with the most graceful airliner ever designed.



          enter image description here






          share|improve this answer









          $endgroup$












          • $begingroup$
            I already knew about the streamlining and the tail-height restrictions, but now I see how that necessitates tilting the fuselage back slightly!
            $endgroup$
            – Sean
            3 hours ago


















          2












          $begingroup$

          You can see that the underside of the Connie's fuselage ahead of the wing root is contoured upwards to begin the taper which ends at the tip of the plane's nose. The other planes had constant-section fuselages ahead of the wing root, in which the nose does not begin to taper down until just aft of the cockpit.



          To maintain the same propeller tip ground clearance, the Lockheed design then required a longer nose gear strut because the attach point for the nose wheel was higher in the air.



          (In the case of the Douglas aircraft, maintaining a constant fuselage cross-section forward and aft of the wing reduced tooling costs and enabled fuselage stretches in future revisions of the airframe.)






          share|improve this answer









          $endgroup$




















            2












            $begingroup$

            enter image description here

            (Top, bottom)



            Despite having the same engine (Wright R-3350), low-wing mounting, and that the main landing gear of both the DC-7 and the Connie retracted into the cowls of the inboard engines, those alone would not count for the taller nose landing gear of the Connie.



            What does is the propeller diameter. Lockheed went with three bladed propellers, compared to the DC-7's four bladed propellers, resulting in a difference of 5.5 ft (1.7 m) in diameter (19 ft$^1$ vs 13.5 ft$^2$ propellers). The Connie also sat with a higher pitch angle, as evident by the 3-view drawing.



            The above answers the geometric reason.



            As for the design choice, fewer blades are more efficient, albeit bigger. As for the nose pitch on ground, it could mean the wing is attached at a lower angle of incidence, permitting a more level floor in cruise.




            $^1$ https://www.globalsecurity.org/military/systems/aircraft/l-049-specs.htm
            $^2$ http://www.deltamuseum.org/docs/site/aircraft-pages/dc-7_review_booklet_1954.pdf (page 4; PDF page 6)






            share|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "528"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62261%2fwhy-is-the-constellations-nose-gear-so-long%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              The Connie's fuselage has a subtle S shaped contour which was intended to conform somewhat to the upwash ahead of the wing and downwash aft of the wing, with a final upturn at the end to place the horizontal tail at the desired vertical location.



              enter image description here



              They also tapered the fuselage to the smallest cross sectional area possible at the nose, to part the air gently you might say, so the bottom ends up sloping up toward the nose.



              Then you have main gear legs that are fairly long because the R3350's propellers are quite large.



              The wing incidence is set to optimize the fuselage curvature's presentation into the airflow in cruise.



              At the same time, you want to have wing chord in a certain desirable AOA range sitting on the ground, and you want to keep the tail from sitting too high (the Connie has the 3 surfaces to keep the vertical height of the tail low enough to fit the common hangars of the day).



              Combine all those factors together and you end up having to the make the strut really long, and ending up with the most graceful airliner ever designed.



              enter image description here






              share|improve this answer









              $endgroup$












              • $begingroup$
                I already knew about the streamlining and the tail-height restrictions, but now I see how that necessitates tilting the fuselage back slightly!
                $endgroup$
                – Sean
                3 hours ago















              5












              $begingroup$

              The Connie's fuselage has a subtle S shaped contour which was intended to conform somewhat to the upwash ahead of the wing and downwash aft of the wing, with a final upturn at the end to place the horizontal tail at the desired vertical location.



              enter image description here



              They also tapered the fuselage to the smallest cross sectional area possible at the nose, to part the air gently you might say, so the bottom ends up sloping up toward the nose.



              Then you have main gear legs that are fairly long because the R3350's propellers are quite large.



              The wing incidence is set to optimize the fuselage curvature's presentation into the airflow in cruise.



              At the same time, you want to have wing chord in a certain desirable AOA range sitting on the ground, and you want to keep the tail from sitting too high (the Connie has the 3 surfaces to keep the vertical height of the tail low enough to fit the common hangars of the day).



              Combine all those factors together and you end up having to the make the strut really long, and ending up with the most graceful airliner ever designed.



              enter image description here






              share|improve this answer









              $endgroup$












              • $begingroup$
                I already knew about the streamlining and the tail-height restrictions, but now I see how that necessitates tilting the fuselage back slightly!
                $endgroup$
                – Sean
                3 hours ago













              5












              5








              5





              $begingroup$

              The Connie's fuselage has a subtle S shaped contour which was intended to conform somewhat to the upwash ahead of the wing and downwash aft of the wing, with a final upturn at the end to place the horizontal tail at the desired vertical location.



              enter image description here



              They also tapered the fuselage to the smallest cross sectional area possible at the nose, to part the air gently you might say, so the bottom ends up sloping up toward the nose.



              Then you have main gear legs that are fairly long because the R3350's propellers are quite large.



              The wing incidence is set to optimize the fuselage curvature's presentation into the airflow in cruise.



              At the same time, you want to have wing chord in a certain desirable AOA range sitting on the ground, and you want to keep the tail from sitting too high (the Connie has the 3 surfaces to keep the vertical height of the tail low enough to fit the common hangars of the day).



              Combine all those factors together and you end up having to the make the strut really long, and ending up with the most graceful airliner ever designed.



              enter image description here






              share|improve this answer









              $endgroup$



              The Connie's fuselage has a subtle S shaped contour which was intended to conform somewhat to the upwash ahead of the wing and downwash aft of the wing, with a final upturn at the end to place the horizontal tail at the desired vertical location.



              enter image description here



              They also tapered the fuselage to the smallest cross sectional area possible at the nose, to part the air gently you might say, so the bottom ends up sloping up toward the nose.



              Then you have main gear legs that are fairly long because the R3350's propellers are quite large.



              The wing incidence is set to optimize the fuselage curvature's presentation into the airflow in cruise.



              At the same time, you want to have wing chord in a certain desirable AOA range sitting on the ground, and you want to keep the tail from sitting too high (the Connie has the 3 surfaces to keep the vertical height of the tail low enough to fit the common hangars of the day).



              Combine all those factors together and you end up having to the make the strut really long, and ending up with the most graceful airliner ever designed.



              enter image description here







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered 5 hours ago









              John KJohn K

              24.9k13675




              24.9k13675











              • $begingroup$
                I already knew about the streamlining and the tail-height restrictions, but now I see how that necessitates tilting the fuselage back slightly!
                $endgroup$
                – Sean
                3 hours ago
















              • $begingroup$
                I already knew about the streamlining and the tail-height restrictions, but now I see how that necessitates tilting the fuselage back slightly!
                $endgroup$
                – Sean
                3 hours ago















              $begingroup$
              I already knew about the streamlining and the tail-height restrictions, but now I see how that necessitates tilting the fuselage back slightly!
              $endgroup$
              – Sean
              3 hours ago




              $begingroup$
              I already knew about the streamlining and the tail-height restrictions, but now I see how that necessitates tilting the fuselage back slightly!
              $endgroup$
              – Sean
              3 hours ago











              2












              $begingroup$

              You can see that the underside of the Connie's fuselage ahead of the wing root is contoured upwards to begin the taper which ends at the tip of the plane's nose. The other planes had constant-section fuselages ahead of the wing root, in which the nose does not begin to taper down until just aft of the cockpit.



              To maintain the same propeller tip ground clearance, the Lockheed design then required a longer nose gear strut because the attach point for the nose wheel was higher in the air.



              (In the case of the Douglas aircraft, maintaining a constant fuselage cross-section forward and aft of the wing reduced tooling costs and enabled fuselage stretches in future revisions of the airframe.)






              share|improve this answer









              $endgroup$

















                2












                $begingroup$

                You can see that the underside of the Connie's fuselage ahead of the wing root is contoured upwards to begin the taper which ends at the tip of the plane's nose. The other planes had constant-section fuselages ahead of the wing root, in which the nose does not begin to taper down until just aft of the cockpit.



                To maintain the same propeller tip ground clearance, the Lockheed design then required a longer nose gear strut because the attach point for the nose wheel was higher in the air.



                (In the case of the Douglas aircraft, maintaining a constant fuselage cross-section forward and aft of the wing reduced tooling costs and enabled fuselage stretches in future revisions of the airframe.)






                share|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  You can see that the underside of the Connie's fuselage ahead of the wing root is contoured upwards to begin the taper which ends at the tip of the plane's nose. The other planes had constant-section fuselages ahead of the wing root, in which the nose does not begin to taper down until just aft of the cockpit.



                  To maintain the same propeller tip ground clearance, the Lockheed design then required a longer nose gear strut because the attach point for the nose wheel was higher in the air.



                  (In the case of the Douglas aircraft, maintaining a constant fuselage cross-section forward and aft of the wing reduced tooling costs and enabled fuselage stretches in future revisions of the airframe.)






                  share|improve this answer









                  $endgroup$



                  You can see that the underside of the Connie's fuselage ahead of the wing root is contoured upwards to begin the taper which ends at the tip of the plane's nose. The other planes had constant-section fuselages ahead of the wing root, in which the nose does not begin to taper down until just aft of the cockpit.



                  To maintain the same propeller tip ground clearance, the Lockheed design then required a longer nose gear strut because the attach point for the nose wheel was higher in the air.



                  (In the case of the Douglas aircraft, maintaining a constant fuselage cross-section forward and aft of the wing reduced tooling costs and enabled fuselage stretches in future revisions of the airframe.)







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 6 hours ago









                  niels nielsenniels nielsen

                  2,5791515




                  2,5791515





















                      2












                      $begingroup$

                      enter image description here

                      (Top, bottom)



                      Despite having the same engine (Wright R-3350), low-wing mounting, and that the main landing gear of both the DC-7 and the Connie retracted into the cowls of the inboard engines, those alone would not count for the taller nose landing gear of the Connie.



                      What does is the propeller diameter. Lockheed went with three bladed propellers, compared to the DC-7's four bladed propellers, resulting in a difference of 5.5 ft (1.7 m) in diameter (19 ft$^1$ vs 13.5 ft$^2$ propellers). The Connie also sat with a higher pitch angle, as evident by the 3-view drawing.



                      The above answers the geometric reason.



                      As for the design choice, fewer blades are more efficient, albeit bigger. As for the nose pitch on ground, it could mean the wing is attached at a lower angle of incidence, permitting a more level floor in cruise.




                      $^1$ https://www.globalsecurity.org/military/systems/aircraft/l-049-specs.htm
                      $^2$ http://www.deltamuseum.org/docs/site/aircraft-pages/dc-7_review_booklet_1954.pdf (page 4; PDF page 6)






                      share|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        enter image description here

                        (Top, bottom)



                        Despite having the same engine (Wright R-3350), low-wing mounting, and that the main landing gear of both the DC-7 and the Connie retracted into the cowls of the inboard engines, those alone would not count for the taller nose landing gear of the Connie.



                        What does is the propeller diameter. Lockheed went with three bladed propellers, compared to the DC-7's four bladed propellers, resulting in a difference of 5.5 ft (1.7 m) in diameter (19 ft$^1$ vs 13.5 ft$^2$ propellers). The Connie also sat with a higher pitch angle, as evident by the 3-view drawing.



                        The above answers the geometric reason.



                        As for the design choice, fewer blades are more efficient, albeit bigger. As for the nose pitch on ground, it could mean the wing is attached at a lower angle of incidence, permitting a more level floor in cruise.




                        $^1$ https://www.globalsecurity.org/military/systems/aircraft/l-049-specs.htm
                        $^2$ http://www.deltamuseum.org/docs/site/aircraft-pages/dc-7_review_booklet_1954.pdf (page 4; PDF page 6)






                        share|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          enter image description here

                          (Top, bottom)



                          Despite having the same engine (Wright R-3350), low-wing mounting, and that the main landing gear of both the DC-7 and the Connie retracted into the cowls of the inboard engines, those alone would not count for the taller nose landing gear of the Connie.



                          What does is the propeller diameter. Lockheed went with three bladed propellers, compared to the DC-7's four bladed propellers, resulting in a difference of 5.5 ft (1.7 m) in diameter (19 ft$^1$ vs 13.5 ft$^2$ propellers). The Connie also sat with a higher pitch angle, as evident by the 3-view drawing.



                          The above answers the geometric reason.



                          As for the design choice, fewer blades are more efficient, albeit bigger. As for the nose pitch on ground, it could mean the wing is attached at a lower angle of incidence, permitting a more level floor in cruise.




                          $^1$ https://www.globalsecurity.org/military/systems/aircraft/l-049-specs.htm
                          $^2$ http://www.deltamuseum.org/docs/site/aircraft-pages/dc-7_review_booklet_1954.pdf (page 4; PDF page 6)






                          share|improve this answer









                          $endgroup$



                          enter image description here

                          (Top, bottom)



                          Despite having the same engine (Wright R-3350), low-wing mounting, and that the main landing gear of both the DC-7 and the Connie retracted into the cowls of the inboard engines, those alone would not count for the taller nose landing gear of the Connie.



                          What does is the propeller diameter. Lockheed went with three bladed propellers, compared to the DC-7's four bladed propellers, resulting in a difference of 5.5 ft (1.7 m) in diameter (19 ft$^1$ vs 13.5 ft$^2$ propellers). The Connie also sat with a higher pitch angle, as evident by the 3-view drawing.



                          The above answers the geometric reason.



                          As for the design choice, fewer blades are more efficient, albeit bigger. As for the nose pitch on ground, it could mean the wing is attached at a lower angle of incidence, permitting a more level floor in cruise.




                          $^1$ https://www.globalsecurity.org/military/systems/aircraft/l-049-specs.htm
                          $^2$ http://www.deltamuseum.org/docs/site/aircraft-pages/dc-7_review_booklet_1954.pdf (page 4; PDF page 6)







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 3 hours ago









                          ymb1ymb1

                          70.3k7225372




                          70.3k7225372



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Aviation Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62261%2fwhy-is-the-constellations-nose-gear-so-long%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                              Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                              Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр