How do I solve this limit? The Next CEO of Stack Overflowrational limit problemHow to evaluate the following limit? $limlimits_xtoinftyxleft(fracpi2-arctan xright).$Limit only using squeeze theorem $ lim_(x,y)to(0,2) x,arctanleft(frac1y-2right)$How to calculate this limit at infinity?How can I use the Limit Laws to solve this limit?How do I even start approaching this limit?how can I find this limitHow to solve this limit without L'Hospital?How to solve this limit when direct substitution fails. Why do this work?L'Hôpital's rule - How solve this limit question

Is HostGator storing my password in plaintext?

What does "Its cash flow is deeply negative" mean?

How do I solve this limit?

Describing a person. What needs to be mentioned?

Inappropriate reference requests from Journal reviewers

What is the difference between "behavior" and "behaviour"?

How do we know the LHC results are robust?

Natural language into sentence logic

Need some help with wall behind rangetop

Horror movie/show or scene where a horse creature opens its mouth really wide and devours a man in a stables

Science fiction (dystopian) short story set after WWIII

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

Text adventure game code

How to write the block matrix in LaTex?

How can I quit an app using Terminal?

What's the point of interval inversion?

Apart from "berlinern", do any other German dialects have a corresponding verb?

How to safely derail a train during transit?

What is the point of a new vote on May's deal when the indicative votes suggest she will not win?

What do "high sea" and "carry" mean in this sentence?

How easy is it to start Magic from scratch?

Too much space between section and text in a twocolumn document

How do I construct this japanese bowl?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin



How do I solve this limit?



The Next CEO of Stack Overflowrational limit problemHow to evaluate the following limit? $limlimits_xtoinftyxleft(fracpi2-arctan xright).$Limit only using squeeze theorem $ lim_(x,y)to(0,2) x,arctanleft(frac1y-2right)$How to calculate this limit at infinity?How can I use the Limit Laws to solve this limit?How do I even start approaching this limit?how can I find this limitHow to solve this limit without L'Hospital?How to solve this limit when direct substitution fails. Why do this work?L'Hôpital's rule - How solve this limit question










3












$begingroup$


How do I solve:



$$
lim_x to 0left[1 - xarctanleft(nxright)right]^, 1/x^2
$$



I know the answer is $e^-n$ for every n > 1, but for the life of me I have no idea how to actually get to that answer. Am I supposed to use a common limit or any theorem? Also, why isn't the limit equal to 1?



Thanks.










share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    I accidentally put k instead of n, sorry.
    $endgroup$
    – radoo
    7 hours ago










  • $begingroup$
    You can take the logarithm of the function and use L'Hopitals rule
    $endgroup$
    – Nimish
    7 hours ago















3












$begingroup$


How do I solve:



$$
lim_x to 0left[1 - xarctanleft(nxright)right]^, 1/x^2
$$



I know the answer is $e^-n$ for every n > 1, but for the life of me I have no idea how to actually get to that answer. Am I supposed to use a common limit or any theorem? Also, why isn't the limit equal to 1?



Thanks.










share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    I accidentally put k instead of n, sorry.
    $endgroup$
    – radoo
    7 hours ago










  • $begingroup$
    You can take the logarithm of the function and use L'Hopitals rule
    $endgroup$
    – Nimish
    7 hours ago













3












3








3


1



$begingroup$


How do I solve:



$$
lim_x to 0left[1 - xarctanleft(nxright)right]^, 1/x^2
$$



I know the answer is $e^-n$ for every n > 1, but for the life of me I have no idea how to actually get to that answer. Am I supposed to use a common limit or any theorem? Also, why isn't the limit equal to 1?



Thanks.










share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




How do I solve:



$$
lim_x to 0left[1 - xarctanleft(nxright)right]^, 1/x^2
$$



I know the answer is $e^-n$ for every n > 1, but for the life of me I have no idea how to actually get to that answer. Am I supposed to use a common limit or any theorem? Also, why isn't the limit equal to 1?



Thanks.







calculus limits






share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 7 hours ago









Felix Marin

68.8k7109146




68.8k7109146






New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 8 hours ago









radooradoo

184




184




New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    I accidentally put k instead of n, sorry.
    $endgroup$
    – radoo
    7 hours ago










  • $begingroup$
    You can take the logarithm of the function and use L'Hopitals rule
    $endgroup$
    – Nimish
    7 hours ago
















  • $begingroup$
    I accidentally put k instead of n, sorry.
    $endgroup$
    – radoo
    7 hours ago










  • $begingroup$
    You can take the logarithm of the function and use L'Hopitals rule
    $endgroup$
    – Nimish
    7 hours ago















$begingroup$
I accidentally put k instead of n, sorry.
$endgroup$
– radoo
7 hours ago




$begingroup$
I accidentally put k instead of n, sorry.
$endgroup$
– radoo
7 hours ago












$begingroup$
You can take the logarithm of the function and use L'Hopitals rule
$endgroup$
– Nimish
7 hours ago




$begingroup$
You can take the logarithm of the function and use L'Hopitals rule
$endgroup$
– Nimish
7 hours ago










3 Answers
3






active

oldest

votes


















5












$begingroup$

You can do it the following way:



$$
lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
$$



doing some algebra on the exponent:
$$
lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
$$



by limit rules:



$$
lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
$$



apply L'Hospital's rule and after some algebra you should get:
$$
expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
$$



simplifying



$$
expleft(-fracn+n+n^22right) = e^-n
$$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



    Also look at the Taylor expansion of the arctan






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



      $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



      using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        radoo is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166364%2fhow-do-i-solve-this-limit%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        You can do it the following way:



        $$
        lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
        $$



        doing some algebra on the exponent:
        $$
        lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
        $$



        by limit rules:



        $$
        lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
        $$



        apply L'Hospital's rule and after some algebra you should get:
        $$
        expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
        $$



        simplifying



        $$
        expleft(-fracn+n+n^22right) = e^-n
        $$






        share|cite|improve this answer









        $endgroup$

















          5












          $begingroup$

          You can do it the following way:



          $$
          lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
          $$



          doing some algebra on the exponent:
          $$
          lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
          $$



          by limit rules:



          $$
          lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
          $$



          apply L'Hospital's rule and after some algebra you should get:
          $$
          expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
          $$



          simplifying



          $$
          expleft(-fracn+n+n^22right) = e^-n
          $$






          share|cite|improve this answer









          $endgroup$















            5












            5








            5





            $begingroup$

            You can do it the following way:



            $$
            lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
            $$



            doing some algebra on the exponent:
            $$
            lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
            $$



            by limit rules:



            $$
            lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
            $$



            apply L'Hospital's rule and after some algebra you should get:
            $$
            expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
            $$



            simplifying



            $$
            expleft(-fracn+n+n^22right) = e^-n
            $$






            share|cite|improve this answer









            $endgroup$



            You can do it the following way:



            $$
            lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
            $$



            doing some algebra on the exponent:
            $$
            lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
            $$



            by limit rules:



            $$
            lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
            $$



            apply L'Hospital's rule and after some algebra you should get:
            $$
            expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
            $$



            simplifying



            $$
            expleft(-fracn+n+n^22right) = e^-n
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 7 hours ago









            DashiDashi

            746311




            746311





















                2












                $begingroup$

                Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



                Also look at the Taylor expansion of the arctan






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



                  Also look at the Taylor expansion of the arctan






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



                    Also look at the Taylor expansion of the arctan






                    share|cite|improve this answer









                    $endgroup$



                    Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



                    Also look at the Taylor expansion of the arctan







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 7 hours ago









                    A. PA. P

                    1386




                    1386





















                        0












                        $begingroup$

                        Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



                        $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



                        using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



                          $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



                          using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



                            $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



                            using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.






                            share|cite|improve this answer









                            $endgroup$



                            Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



                            $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



                            using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 6 hours ago









                            Barry CipraBarry Cipra

                            60.5k655128




                            60.5k655128




















                                radoo is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                radoo is a new contributor. Be nice, and check out our Code of Conduct.












                                radoo is a new contributor. Be nice, and check out our Code of Conduct.











                                radoo is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166364%2fhow-do-i-solve-this-limit%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                                Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                                Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр