Why does GHC infer a monomorphic type here, even with MonomorphismRestriction disabled? The Next CEO of Stack OverflowResolving the type of `f = f (<*>) pure`NoMonomorphismRestriction helps preserve sharing?How can eta-reduction of a well typed function result in a type error?Can I write such polymorphic function? What language extensions do I need?GHC rewrite rule specialising a function for a type classType Inference in PatternsHow to type check recursive definitions using Algorithm W?What is the monomorphism restriction?Why are higher rank types so fragile in HaskellWhy can't GHC typecheck this function involving polymorphism and existential types?Problems With Type Inference on (^)

Whats the best way to handle refactoring a big file?

How do scammers retract money, while you can’t?

What is the difference between "behavior" and "behaviour"?

How to write papers efficiently when English isn't my first language?

Fastest way to shutdown Ubuntu Mate 18.10

What does "Its cash flow is deeply negative" mean?

Why does C# sound extremely flat when saxophone is tuned to G?

What can we do to stop prior company from asking us questions?

Why is there a PLL in CPU?

Anatomically Correct Strange Women In Ponds Distributing Swords

Describing a person. What needs to be mentioned?

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

What is the point of a new vote on May's deal when the indicative votes suggest she will not win?

How easy is it to start Magic from scratch?

Should I tutor a student who I know has cheated on their homework?

Unreliable Magic - Is it worth it?

What is the purpose of the Evocation wizard's Potent Cantrip feature?

Text adventure game code

Grabbing quick drinks

When did Lisp start using symbols for arithmetic?

Trouble understanding the speech of overseas colleagues

Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?

How do I solve this limit?

How to get regions to plot as graphics



Why does GHC infer a monomorphic type here, even with MonomorphismRestriction disabled?



The Next CEO of Stack OverflowResolving the type of `f = f (<*>) pure`NoMonomorphismRestriction helps preserve sharing?How can eta-reduction of a well typed function result in a type error?Can I write such polymorphic function? What language extensions do I need?GHC rewrite rule specialising a function for a type classType Inference in PatternsHow to type check recursive definitions using Algorithm W?What is the monomorphism restriction?Why are higher rank types so fragile in HaskellWhy can't GHC typecheck this function involving polymorphism and existential types?Problems With Type Inference on (^)










16















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
























  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    10 hours ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    10 hours ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    10 hours ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    9 hours ago
















16















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
























  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    10 hours ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    10 hours ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    10 hours ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    9 hours ago














16












16








16


2






This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?







haskell recursion type-inference parametric-polymorphism






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 7 hours ago







leftaroundabout

















asked 10 hours ago









leftaroundaboutleftaroundabout

80.1k3119237




80.1k3119237












  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    10 hours ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    10 hours ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    10 hours ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    9 hours ago


















  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    10 hours ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    10 hours ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    10 hours ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    9 hours ago

















Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

– Alec
10 hours ago





Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

– Alec
10 hours ago













@Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

– leftaroundabout
10 hours ago





@Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

– leftaroundabout
10 hours ago













I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

– Robin Zigmond
10 hours ago





I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

– Robin Zigmond
10 hours ago













@RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

– leftaroundabout
9 hours ago






@RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

– leftaroundabout
9 hours ago













1 Answer
1






active

oldest

votes


















19














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55402733%2fwhy-does-ghc-infer-a-monomorphic-type-here-even-with-monomorphismrestriction-di%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









19














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago















19














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago













19












19








19







Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer















Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)






share|improve this answer














share|improve this answer



share|improve this answer








edited 4 hours ago

























answered 9 hours ago









dfeuerdfeuer

33.6k349133




33.6k349133







  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago












  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago







2




2





My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

– Bakuriu
8 hours ago





My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

– Bakuriu
8 hours ago




2




2





@Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

– dfeuer
8 hours ago






@Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

– dfeuer
8 hours ago














Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

– Bakuriu
6 hours ago





Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

– Bakuriu
6 hours ago













@Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

– dfeuer
5 hours ago





@Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

– dfeuer
5 hours ago



















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55402733%2fwhy-does-ghc-infer-a-monomorphic-type-here-even-with-monomorphismrestriction-di%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр