Skip to main content

Число Съдържание Означения | Класификация | Бележки | Външни препратки | Вижте също | НавигацияразширитеразширитеразширитеIntegerЧислоПонятие за число и цифраКакво е това числоВидове числа

Числа


количествобройредцифриЕГНISBNсъбиранеизважданеумножениеделениеаритметикатачасти на речтачислителни именаарабските цифрибуквиримските цифрибройна системагръцката азбукакирилицатаминуслатиницатаестественитетеорията на множестватануламощносттапразното множествоаритметиката на Пеаноотрицателни числанемскипръстенчастноизброимо множествоГеорг Канторирационални числачисловата осабстрактната алгебраподредено полеалгебрически затворено полекомплексните числаалгебричнитрансцендентниполиномипинеперовото числореални числакватернионикомутативнооктониониасоциативността












Число




от Уикипедия, свободната енциклопедия






Направо към навигацията
Направо към търсенето




Емблема за пояснителна страницаВижте пояснителната страница за други значения на Число.




Подмножества на числата


Числото представлява абстрактно математическо понятие за означаване на количество, броене и измерване. Като математически обект изразява идеята за брой и ред в зависимост от контекста му на употреба. Символите, с които се изписват числата, се наричат цифри. В разговорния език често двете понятия се използват като синоними, което е неправилно. С цифри се изписват не само числа, а и кодове, означения, телефонни номера, ЕГН, номера на кредитни карти, ISBN на книги и други.


Математическите операции, които могат да се извършват с числата, са събиране, изваждане, умножение, деление и повдигане на степен. Те са обикновено предмет на изучаване от аритметиката.




Съдържание





  • 1 Означения


  • 2 Класификация

    • 2.1 Естествени числа


    • 2.2 Цели числа


    • 2.3 Рационални числа


    • 2.4 Реални числа


    • 2.5 Комплексни числа


    • 2.6 Хиперкомплексни числа


    • 2.7 Изчислими числа


    • 2.8 Други множества



  • 3 Бележки


  • 4 Външни препратки


  • 5 Вижте също




Означения |


В разговорния език, а понякога и в писмения, числата се обозначават със специални части на речта – числителни имена. В писмена форма за означаване на числата обикновено се използват знаци, наричани цифри, които могат да бъдат както специално предназначени за тази цел (например, арабските цифри 0, 1, 2 и т.н.), така и букви, използвани също и за изписване на думи (например, римските цифри I, V, X и т.н.).


Правилата, по които цифрите означават числа, се наричат бройна система. При римските цифри, както подобните системи, основани на гръцката азбука и кирилицата, стойността, означавана от дадена цифра, зависи не само от нейното положение, но и от съседните цифри. За разлика от тези системи, при позиционните числената стойност на отделната цифра се определя само от нейното положение, като в общ вид числата се означават като:


(anan−1...a1a0,a−1a−2...a−(m−1)a−m)Q=∑k=−mnakQkdisplaystyle (a_na_n-1...a_1a_0,a_-1a_-2...a_-(m-1)a_-m)_Q=sum _k=-m^na_kQ^k


където Q е основата на бройната система, а ak са отделните цифри.


В наши дни най-широко разпространение има позиционната бройна система с основа 10, използваща десетте арабски цифри. При изписването на естествени числа в десетична система най-дясната цифра има тежест 1, а всяка друга цифра има десет пъти по-голяма тежест от разположената вдясно от нея. Отрицателните числа се обозначават с добавяне на знака минус (-) вляво от поредицата цифри.


Други основи, които се използват в особени случаи, като например в изчислителната техника, са 16, 8, 2. При шестнадесетичната система обикновено се използват арабските цифри, като към тях се добавят шест допълнителни цифри, съвпадащи с първите букви на латиницата – A, B, C, D, E и F.



Класификация |













Основни числови множества
Естествени числа
1, 2, 3, 4, ...
Цели числа
..., −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, ...
Рационални числа

a/b, където a и b са цели числа и b е различно от нула
Реални числа
Границата на сходящ ред от рационални числа
Комплексни числа

a + bi, където a и b са реални числа, а i е квадратен корен от −1


Естествени числа |


Най-добре познатите числа са естествените, използвани при броене: едно, две, три и така нататък. Традиционно редицата на естествените числа започва с 1, но през 19 век в теорията на множествата, а и в други области на математиката, нула, мощността на празното множество, също започва да се включва в множеството на естествените числа. В наши дни различни източници използват две различни дефиниции на това множество – с или без нула. Множеството на естествените числа се обозначава с N или Ndisplaystyle mathbb N .


В теорията на множествата, която може да служи за аксиоматична основа на съвременната математика,[1] естествените числа могат да се разглеждат като класове от еквивалентни множества. Например, числото три може да се разглежда като класът от всички множества, които имат точно три елемента. От друга страна, в аритметиката на Пеано числото три се представя като sss0, трети наследник на 0. Възможни са и много други представяния.



Цели числа |


Множеството на целите числа включва естествените числа (включително нула) и целите отрицателни числа – целите числа, сборът на които с естествено число е нула (например, за отрицателното число -7 сборът 7 + (-7) = 0). Множеството на целите цисла се обозначава със Z или Zdisplaystyle mathbb Z (от немски: Zahl, „число“).


Множеството на целите числа образува пръстен с операциите събиране и умножение.[2]



Рационални числа |


Рационално число се нарича такова число, което може да бъде изписано като деление на две цели числа. Те могат да бъдат изразени като частно на целочислено делимо и ненулев целочислен делител. Рационалните числа обикновено се представят като обикновени дроби:


mndisplaystyle m over n,

където m представлява брой еднакви части, а n – броят такива части, които образуват единица.


Множеството на рационалните числа се означава с Q или Qdisplaystyle mathbb Q . То включва всички цели числа, тъй като всяко цяло число може да бъде записано като дроб със знаменател 1. Q е изброимо множество – на всеки елемент на Q може да се съпостави естествено число. Равномощността на множеството на рационалните числа Q с множеството на естествените числа N е доказана от Георг Кантор (1845 – 1918) с помощта на неговия диагонален метод.



Реални числа |


Множеството на реалните числа включва всички рационални числа, както и дробите, които не могат да бъдат представени като частно на цели числа и които се наричат ирационални числа. Всяко реално число съответства на точка от числовата ос. Множеството им си бележи с R или Rdisplaystyle mathbb R .


Реалните числа обикновено се представят като десетични дроби, като рационалните числа са или крайни (например, 1/2 = 0,5), или безкрайни, но периодични дроби (например, 1/3 = 0,33333... = 0,(3)). От друга страна, ирационалните числа са безкрайни дроби, при които няма периодичност (например, π = 3.14159265358979). По тази причина те не могат да бъдат записани като десетична дроб, освен със закръгление.


В абстрактната алгебра всяко пълно подредено поле е изоморфно с множеството на реалните числа, но реалните числа не представляват алгебрически затворено поле.



Комплексни числа |


От своя страна множеството на реалните числа може да се разшири до Cdisplaystyle mathbb C (или C), множеството на комплексните числа.


Комплексните числа се делят на две множества – алгебрични и трансцендентни числа. Алгебричните числа, за разлика от трансцендентните, са корени на ненулеви полиноми с целочислени коефициенти. Например 2displaystyle sqrt 2 е алгебрично число, тъй като е корен на полинома x2−2displaystyle x^2-2. Числа като пи и неперовото число са трансцендентни.


Комплексното число е израз от вида a+bi, където a и b са реални числа, а i е имагинерната единица, за която е вярно че i2 = -1. a и b се наричат реална и имагинерна част на числото. Например числото 3+2i има реална част 3 и имагинерна част 2. Реалните числа могат да се представят като комплексни с имагинерна част 0, например 2 = 2+0i. Комплексните числа могат да се събират, изваждат, умножават и делят също като реалните.



Хиперкомплексни числа |



Комплексните числа също могат да бъдат разширени до кватерниони, чието умножение обаче не е комутативно. Кватернионите могат да се разширят до октониони, но при тях се губи и асоциативността.



Изчислими числа |




Други множества |




Бележки |



  1. Suppes, Patrick. Axiomatic Set Theory. Courier Dover Publications, 1972. ISBN 0486616304. p. 1. (на английски)


  2. Weisstein, Eric W.. Integer. // MathWorld. Wolfram Research, 2011. Посетен на 29 юни 2011. (на английски)



Външни препратки |


  • Число

  • Понятие за число и цифра

  • Какво е това число

  • Видове числа


Вижте също |



  • Бройни системи

  • Римски числа

  • Четни и нечетни числа

  • Малки числа

  • Големи числа

  • Прости числа

  • Трансцендентни числа

  • Числа на Фибоначи

  • Числа на маите

  • Квантово число

  • Масово число

  • Цяло число

  • Алгебрично число

  • Съвършено число

  • Съставно число

  • Неперово число

  • Реални числа

  • Рационални числа

  • Ирационални числа

  • Комплексно число

  • Естествено число

  • Зенитно часово число

  • Главно квантово число

  • Координационно число

  • Вълново число

  • Галилеево число

  • Правоъгълно число

  • Безквадратно число

  • Мерсеново просто число

  • Имагинерно число

  • Хиперкомплексно число

  • Архимедово число

  • Десетични числа

  • Двоични числа

  • Шестнадесетични числа

  • Атомно число

  • Взаимнопросто число

  • Число на Мах

  • Число на Рейнолдс

  • Число на Девора

  • Число на Греъм

  • Число на Авогадро









Взето от „https://bg.wikipedia.org/w/index.php?title=Число&oldid=9393050“.










Навигация



























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.124","walltime":"0.203","ppvisitednodes":"value":1661,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":8894,"limit":2097152,"templateargumentsize":"value":8947,"limit":2097152,"expansiondepth":"value":11,"limit":40,"expensivefunctioncount":"value":8,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":1731,"limit":5000000,"entityaccesscount":"value":1,"limit":400,"timingprofile":["100.00% 101.862 1 -total"," 25.41% 25.882 1 Шаблон:Cite_book"," 24.76% 25.224 2 Шаблон:Cite"," 17.29% 17.613 8 Шаблон:Основна"," 12.01% 12.237 1 Шаблон:Към_пояснение"," 9.64% 9.817 1 Шаблон:Cite_web"," 8.45% 8.612 2 Шаблон:Източник_БДС_17377"," 8.28% 8.439 1 Шаблон:Lang"," 4.82% 4.913 2 Шаблон:Tfn"," 4.15% 4.224 3 Шаблон:Lang/lang"],"cachereport":"origin":"mw1270","timestamp":"20190407073905","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":128,"wgHostname":"mw1264"););

Popular posts from this blog

How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр