What does it mean to express a gate in Dirac notation?How does bra-ket notation work?How does Fourier sampling actually work (and solve the parity problem)?What do we mean by the notation $lvert mathbfx, 0rangle$?What does the notation $lvert underlinex rangle$ mean?How to properly write the action of a quantum gate implementing an operator $U$ on the superposition of its eigenvectors?Notation for two entangled registersWhy is correlation in the $X$ basis represented as $Xotimes X = 1$?N&C quantum circuit for Grover's algorithmNotation for two qubit composite product stateWhat is the tensorial representation of the quantum swap gate?

How to pronounce 'C++' in Spanish

Fizzy, soft, pop and still drinks

Do I have an "anti-research" personality?

Exchange,swap or switch

Map of water taps to fill bottles

Mjolnir's timeline from Thor's perspective

How can the Zone of Truth spell be defeated without the caster knowing?

Why does processed meat contain preservatives, while canned fish needs not?

Phrase for the opposite of "foolproof"

How exactly does Hawking radiation decrease the mass of black holes?

Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?

What is the most expensive material in the world that could be used to create Pun-Pun's lute?

French for 'It must be my imagination'?

Does a strong solution to a SDE imply lipschitz condition?

Is this homebrew Wind Wave spell balanced?

How can I practically buy stocks?

Is there really no use for MD5 anymore?

Why isn't the definition of absolute value applied when squaring a radical containing a variable?

A strange hotel

Realistic Necromancy?

Can someone publish a story that happened to you?

Does Gita support doctrine of eternal cycle of birth and death for evil people?

Critique of timeline aesthetic

What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?



What does it mean to express a gate in Dirac notation?


How does bra-ket notation work?How does Fourier sampling actually work (and solve the parity problem)?What do we mean by the notation $lvert mathbfx, 0rangle$?What does the notation $lvert underlinex rangle$ mean?How to properly write the action of a quantum gate implementing an operator $U$ on the superposition of its eigenvectors?Notation for two entangled registersWhy is correlation in the $X$ basis represented as $Xotimes X = 1$?N&C quantum circuit for Grover's algorithmNotation for two qubit composite product stateWhat is the tensorial representation of the quantum swap gate?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


When discussing the Dirac notation of an operator, for example, let's just say we have the bit flip gate $X$ if we want to write this in the Dirac notation does that just mean writing it as follows?



$$X|psirangle=X(c_0|0rangle+c_1|1rangle)=c_0|1rangle+c_1|0rangle$$










share|improve this question











$endgroup$


















    1












    $begingroup$


    When discussing the Dirac notation of an operator, for example, let's just say we have the bit flip gate $X$ if we want to write this in the Dirac notation does that just mean writing it as follows?



    $$X|psirangle=X(c_0|0rangle+c_1|1rangle)=c_0|1rangle+c_1|0rangle$$










    share|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      When discussing the Dirac notation of an operator, for example, let's just say we have the bit flip gate $X$ if we want to write this in the Dirac notation does that just mean writing it as follows?



      $$X|psirangle=X(c_0|0rangle+c_1|1rangle)=c_0|1rangle+c_1|0rangle$$










      share|improve this question











      $endgroup$




      When discussing the Dirac notation of an operator, for example, let's just say we have the bit flip gate $X$ if we want to write this in the Dirac notation does that just mean writing it as follows?



      $$X|psirangle=X(c_0|0rangle+c_1|1rangle)=c_0|1rangle+c_1|0rangle$$







      quantum-gate notation






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 1 hour ago









      Sanchayan Dutta

      6,72341556




      6,72341556










      asked 1 hour ago









      can'tcauchycan'tcauchy

      1945




      1945




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          This might mean using the ketbra notation:



          $$X = |1rangle langle0| + |1rangle langle0|$$



          This notation describes the effect the operator has on the basis vectors: in this case $X$ converts $|0rangle$ into $|1rangle$ and vice versa.



          A couple of other examples:



          $$Z = |0rangle langle0| - |1rangle langle1|$$



          $$operatornameCNOT = |0 ranglelangle0| otimes I + |1 ranglelangle 1| otimes X = |00rangle langle00| + |01rangle langle01| + |11rangle langle10| + |10rangle langle11|$$






          share|improve this answer











          $endgroup$












          • $begingroup$
            For OP: a quick and intuitive way to derive the CNOT's outer product representation is to see what effect it has on the individual qubits. The CNOT flips the second qubit when the control qubit is $|1rangle$. When the control qubit is $|0rangle$ the second qubit remains intact, which is equivalent to applying the identity gate $I$. So we get $|0ranglelangle 0|otimes I$ for this. However, when the control qubit is $|1rangle$ we need to flip the second qubit's state i.e. we need to apply the $X$ gate to the second qubit. Thus, we get $|1ranglelangle 1|otimes X$ for this.
            $endgroup$
            – Sanchayan Dutta
            27 mins ago



















          0












          $begingroup$

          The Dirac notation for the Pauli-$X$ gate is:



          $$|1rangle langle0| + |1rangle langle0|.$$



          Now you might be wondering where this comes from. The term you're looking for is outer product representation of the $X$ gate. It follows from the spectral decomposition theorem (check Nielsen & Chuang 10th edition, p. 72) which holds for all normal operators. The key point:




          In terms of the outer product representation, this means that $M$ can be written as $M=sum_ilambda_i|iranglelangle i|$,where $lambda_i$ are the eigenvalues of $M$,$|irangle$ is an orthonormal basis for $V$, and each $|irangle$ an eigenvector of $M$ with eigenvalue $lambda_i$.




          The eigenvectors of the Pauli-$X$ gate are $-|0rangle+|1rangle$ and $|0rangle+|1rangle$, and the corresponding eigenvalues are $-1$ and $+1$ cf. Wolfram Alpha. Normalize the eigenvectors to get an orthonormal basis for $X$ i.e. $frac-sqrt2,fracsqrt2$. According the spectral decomposition theorem you can represent the $X$ gate as:



          $$-1(frac-sqrt2)(frac+langle1sqrt2) + 1(fracsqrt2)(frac+langle1sqrt2)$$
          $$=-frac12(|0ranglelangle0|-|0ranglelangle1|-|1ranglelangle0|+|1ranglelangle1|)+frac12(|0ranglelangle0|+|0ranglelangle1|+|1ranglelangle0|+|1ranglelangle1|)$$
          $$=|1rangle langle0| + |1rangle langle0|$$



          To convince you that this result is correct let's apply it on an arbitrary qubit state $c_0|0rangle+c_1 |1rangle$:



          $$(|1rangle langle0| + |0rangle langle1|)(c_0|0rangle+c_1|1rangle)$$
          $$=c_0|1ranglelangle0|0rangle+c_1|0ranglelangle 1|1rangle$$
          $$=c_0 |1rangle + c_1 |0rangle$$



          So yes, our result is correct and the bits were indeed flipped upon application of $X=|1rangle langle0| + |1rangle langle0|$ to $c_0|0rangle + c_1|1rangle$.The last step followed from the fact that $langle 0|0rangle$ and $langle 1|1rangle$ are both equal to $1$, as $|0rangle$ and $|1rangle$ are orthonormal vectors i.e. their inner product $langle psi|psirangle=1$ by definition.



          We're done. As an exercise, find the outer product representation of the Pauli-$Z$ gate by yourself. And definitely, do go through the proof of the spectral theorem in Nielsen and Chung if time permits!






          share|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "694"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5989%2fwhat-does-it-mean-to-express-a-gate-in-dirac-notation%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            This might mean using the ketbra notation:



            $$X = |1rangle langle0| + |1rangle langle0|$$



            This notation describes the effect the operator has on the basis vectors: in this case $X$ converts $|0rangle$ into $|1rangle$ and vice versa.



            A couple of other examples:



            $$Z = |0rangle langle0| - |1rangle langle1|$$



            $$operatornameCNOT = |0 ranglelangle0| otimes I + |1 ranglelangle 1| otimes X = |00rangle langle00| + |01rangle langle01| + |11rangle langle10| + |10rangle langle11|$$






            share|improve this answer











            $endgroup$












            • $begingroup$
              For OP: a quick and intuitive way to derive the CNOT's outer product representation is to see what effect it has on the individual qubits. The CNOT flips the second qubit when the control qubit is $|1rangle$. When the control qubit is $|0rangle$ the second qubit remains intact, which is equivalent to applying the identity gate $I$. So we get $|0ranglelangle 0|otimes I$ for this. However, when the control qubit is $|1rangle$ we need to flip the second qubit's state i.e. we need to apply the $X$ gate to the second qubit. Thus, we get $|1ranglelangle 1|otimes X$ for this.
              $endgroup$
              – Sanchayan Dutta
              27 mins ago
















            2












            $begingroup$

            This might mean using the ketbra notation:



            $$X = |1rangle langle0| + |1rangle langle0|$$



            This notation describes the effect the operator has on the basis vectors: in this case $X$ converts $|0rangle$ into $|1rangle$ and vice versa.



            A couple of other examples:



            $$Z = |0rangle langle0| - |1rangle langle1|$$



            $$operatornameCNOT = |0 ranglelangle0| otimes I + |1 ranglelangle 1| otimes X = |00rangle langle00| + |01rangle langle01| + |11rangle langle10| + |10rangle langle11|$$






            share|improve this answer











            $endgroup$












            • $begingroup$
              For OP: a quick and intuitive way to derive the CNOT's outer product representation is to see what effect it has on the individual qubits. The CNOT flips the second qubit when the control qubit is $|1rangle$. When the control qubit is $|0rangle$ the second qubit remains intact, which is equivalent to applying the identity gate $I$. So we get $|0ranglelangle 0|otimes I$ for this. However, when the control qubit is $|1rangle$ we need to flip the second qubit's state i.e. we need to apply the $X$ gate to the second qubit. Thus, we get $|1ranglelangle 1|otimes X$ for this.
              $endgroup$
              – Sanchayan Dutta
              27 mins ago














            2












            2








            2





            $begingroup$

            This might mean using the ketbra notation:



            $$X = |1rangle langle0| + |1rangle langle0|$$



            This notation describes the effect the operator has on the basis vectors: in this case $X$ converts $|0rangle$ into $|1rangle$ and vice versa.



            A couple of other examples:



            $$Z = |0rangle langle0| - |1rangle langle1|$$



            $$operatornameCNOT = |0 ranglelangle0| otimes I + |1 ranglelangle 1| otimes X = |00rangle langle00| + |01rangle langle01| + |11rangle langle10| + |10rangle langle11|$$






            share|improve this answer











            $endgroup$



            This might mean using the ketbra notation:



            $$X = |1rangle langle0| + |1rangle langle0|$$



            This notation describes the effect the operator has on the basis vectors: in this case $X$ converts $|0rangle$ into $|1rangle$ and vice versa.



            A couple of other examples:



            $$Z = |0rangle langle0| - |1rangle langle1|$$



            $$operatornameCNOT = |0 ranglelangle0| otimes I + |1 ranglelangle 1| otimes X = |00rangle langle00| + |01rangle langle01| + |11rangle langle10| + |10rangle langle11|$$







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 42 mins ago









            Sanchayan Dutta

            6,72341556




            6,72341556










            answered 1 hour ago









            Mariia MykhailovaMariia Mykhailova

            1,9401212




            1,9401212











            • $begingroup$
              For OP: a quick and intuitive way to derive the CNOT's outer product representation is to see what effect it has on the individual qubits. The CNOT flips the second qubit when the control qubit is $|1rangle$. When the control qubit is $|0rangle$ the second qubit remains intact, which is equivalent to applying the identity gate $I$. So we get $|0ranglelangle 0|otimes I$ for this. However, when the control qubit is $|1rangle$ we need to flip the second qubit's state i.e. we need to apply the $X$ gate to the second qubit. Thus, we get $|1ranglelangle 1|otimes X$ for this.
              $endgroup$
              – Sanchayan Dutta
              27 mins ago

















            • $begingroup$
              For OP: a quick and intuitive way to derive the CNOT's outer product representation is to see what effect it has on the individual qubits. The CNOT flips the second qubit when the control qubit is $|1rangle$. When the control qubit is $|0rangle$ the second qubit remains intact, which is equivalent to applying the identity gate $I$. So we get $|0ranglelangle 0|otimes I$ for this. However, when the control qubit is $|1rangle$ we need to flip the second qubit's state i.e. we need to apply the $X$ gate to the second qubit. Thus, we get $|1ranglelangle 1|otimes X$ for this.
              $endgroup$
              – Sanchayan Dutta
              27 mins ago
















            $begingroup$
            For OP: a quick and intuitive way to derive the CNOT's outer product representation is to see what effect it has on the individual qubits. The CNOT flips the second qubit when the control qubit is $|1rangle$. When the control qubit is $|0rangle$ the second qubit remains intact, which is equivalent to applying the identity gate $I$. So we get $|0ranglelangle 0|otimes I$ for this. However, when the control qubit is $|1rangle$ we need to flip the second qubit's state i.e. we need to apply the $X$ gate to the second qubit. Thus, we get $|1ranglelangle 1|otimes X$ for this.
            $endgroup$
            – Sanchayan Dutta
            27 mins ago





            $begingroup$
            For OP: a quick and intuitive way to derive the CNOT's outer product representation is to see what effect it has on the individual qubits. The CNOT flips the second qubit when the control qubit is $|1rangle$. When the control qubit is $|0rangle$ the second qubit remains intact, which is equivalent to applying the identity gate $I$. So we get $|0ranglelangle 0|otimes I$ for this. However, when the control qubit is $|1rangle$ we need to flip the second qubit's state i.e. we need to apply the $X$ gate to the second qubit. Thus, we get $|1ranglelangle 1|otimes X$ for this.
            $endgroup$
            – Sanchayan Dutta
            27 mins ago














            0












            $begingroup$

            The Dirac notation for the Pauli-$X$ gate is:



            $$|1rangle langle0| + |1rangle langle0|.$$



            Now you might be wondering where this comes from. The term you're looking for is outer product representation of the $X$ gate. It follows from the spectral decomposition theorem (check Nielsen & Chuang 10th edition, p. 72) which holds for all normal operators. The key point:




            In terms of the outer product representation, this means that $M$ can be written as $M=sum_ilambda_i|iranglelangle i|$,where $lambda_i$ are the eigenvalues of $M$,$|irangle$ is an orthonormal basis for $V$, and each $|irangle$ an eigenvector of $M$ with eigenvalue $lambda_i$.




            The eigenvectors of the Pauli-$X$ gate are $-|0rangle+|1rangle$ and $|0rangle+|1rangle$, and the corresponding eigenvalues are $-1$ and $+1$ cf. Wolfram Alpha. Normalize the eigenvectors to get an orthonormal basis for $X$ i.e. $frac-sqrt2,fracsqrt2$. According the spectral decomposition theorem you can represent the $X$ gate as:



            $$-1(frac-sqrt2)(frac+langle1sqrt2) + 1(fracsqrt2)(frac+langle1sqrt2)$$
            $$=-frac12(|0ranglelangle0|-|0ranglelangle1|-|1ranglelangle0|+|1ranglelangle1|)+frac12(|0ranglelangle0|+|0ranglelangle1|+|1ranglelangle0|+|1ranglelangle1|)$$
            $$=|1rangle langle0| + |1rangle langle0|$$



            To convince you that this result is correct let's apply it on an arbitrary qubit state $c_0|0rangle+c_1 |1rangle$:



            $$(|1rangle langle0| + |0rangle langle1|)(c_0|0rangle+c_1|1rangle)$$
            $$=c_0|1ranglelangle0|0rangle+c_1|0ranglelangle 1|1rangle$$
            $$=c_0 |1rangle + c_1 |0rangle$$



            So yes, our result is correct and the bits were indeed flipped upon application of $X=|1rangle langle0| + |1rangle langle0|$ to $c_0|0rangle + c_1|1rangle$.The last step followed from the fact that $langle 0|0rangle$ and $langle 1|1rangle$ are both equal to $1$, as $|0rangle$ and $|1rangle$ are orthonormal vectors i.e. their inner product $langle psi|psirangle=1$ by definition.



            We're done. As an exercise, find the outer product representation of the Pauli-$Z$ gate by yourself. And definitely, do go through the proof of the spectral theorem in Nielsen and Chung if time permits!






            share|improve this answer











            $endgroup$

















              0












              $begingroup$

              The Dirac notation for the Pauli-$X$ gate is:



              $$|1rangle langle0| + |1rangle langle0|.$$



              Now you might be wondering where this comes from. The term you're looking for is outer product representation of the $X$ gate. It follows from the spectral decomposition theorem (check Nielsen & Chuang 10th edition, p. 72) which holds for all normal operators. The key point:




              In terms of the outer product representation, this means that $M$ can be written as $M=sum_ilambda_i|iranglelangle i|$,where $lambda_i$ are the eigenvalues of $M$,$|irangle$ is an orthonormal basis for $V$, and each $|irangle$ an eigenvector of $M$ with eigenvalue $lambda_i$.




              The eigenvectors of the Pauli-$X$ gate are $-|0rangle+|1rangle$ and $|0rangle+|1rangle$, and the corresponding eigenvalues are $-1$ and $+1$ cf. Wolfram Alpha. Normalize the eigenvectors to get an orthonormal basis for $X$ i.e. $frac-sqrt2,fracsqrt2$. According the spectral decomposition theorem you can represent the $X$ gate as:



              $$-1(frac-sqrt2)(frac+langle1sqrt2) + 1(fracsqrt2)(frac+langle1sqrt2)$$
              $$=-frac12(|0ranglelangle0|-|0ranglelangle1|-|1ranglelangle0|+|1ranglelangle1|)+frac12(|0ranglelangle0|+|0ranglelangle1|+|1ranglelangle0|+|1ranglelangle1|)$$
              $$=|1rangle langle0| + |1rangle langle0|$$



              To convince you that this result is correct let's apply it on an arbitrary qubit state $c_0|0rangle+c_1 |1rangle$:



              $$(|1rangle langle0| + |0rangle langle1|)(c_0|0rangle+c_1|1rangle)$$
              $$=c_0|1ranglelangle0|0rangle+c_1|0ranglelangle 1|1rangle$$
              $$=c_0 |1rangle + c_1 |0rangle$$



              So yes, our result is correct and the bits were indeed flipped upon application of $X=|1rangle langle0| + |1rangle langle0|$ to $c_0|0rangle + c_1|1rangle$.The last step followed from the fact that $langle 0|0rangle$ and $langle 1|1rangle$ are both equal to $1$, as $|0rangle$ and $|1rangle$ are orthonormal vectors i.e. their inner product $langle psi|psirangle=1$ by definition.



              We're done. As an exercise, find the outer product representation of the Pauli-$Z$ gate by yourself. And definitely, do go through the proof of the spectral theorem in Nielsen and Chung if time permits!






              share|improve this answer











              $endgroup$















                0












                0








                0





                $begingroup$

                The Dirac notation for the Pauli-$X$ gate is:



                $$|1rangle langle0| + |1rangle langle0|.$$



                Now you might be wondering where this comes from. The term you're looking for is outer product representation of the $X$ gate. It follows from the spectral decomposition theorem (check Nielsen & Chuang 10th edition, p. 72) which holds for all normal operators. The key point:




                In terms of the outer product representation, this means that $M$ can be written as $M=sum_ilambda_i|iranglelangle i|$,where $lambda_i$ are the eigenvalues of $M$,$|irangle$ is an orthonormal basis for $V$, and each $|irangle$ an eigenvector of $M$ with eigenvalue $lambda_i$.




                The eigenvectors of the Pauli-$X$ gate are $-|0rangle+|1rangle$ and $|0rangle+|1rangle$, and the corresponding eigenvalues are $-1$ and $+1$ cf. Wolfram Alpha. Normalize the eigenvectors to get an orthonormal basis for $X$ i.e. $frac-sqrt2,fracsqrt2$. According the spectral decomposition theorem you can represent the $X$ gate as:



                $$-1(frac-sqrt2)(frac+langle1sqrt2) + 1(fracsqrt2)(frac+langle1sqrt2)$$
                $$=-frac12(|0ranglelangle0|-|0ranglelangle1|-|1ranglelangle0|+|1ranglelangle1|)+frac12(|0ranglelangle0|+|0ranglelangle1|+|1ranglelangle0|+|1ranglelangle1|)$$
                $$=|1rangle langle0| + |1rangle langle0|$$



                To convince you that this result is correct let's apply it on an arbitrary qubit state $c_0|0rangle+c_1 |1rangle$:



                $$(|1rangle langle0| + |0rangle langle1|)(c_0|0rangle+c_1|1rangle)$$
                $$=c_0|1ranglelangle0|0rangle+c_1|0ranglelangle 1|1rangle$$
                $$=c_0 |1rangle + c_1 |0rangle$$



                So yes, our result is correct and the bits were indeed flipped upon application of $X=|1rangle langle0| + |1rangle langle0|$ to $c_0|0rangle + c_1|1rangle$.The last step followed from the fact that $langle 0|0rangle$ and $langle 1|1rangle$ are both equal to $1$, as $|0rangle$ and $|1rangle$ are orthonormal vectors i.e. their inner product $langle psi|psirangle=1$ by definition.



                We're done. As an exercise, find the outer product representation of the Pauli-$Z$ gate by yourself. And definitely, do go through the proof of the spectral theorem in Nielsen and Chung if time permits!






                share|improve this answer











                $endgroup$



                The Dirac notation for the Pauli-$X$ gate is:



                $$|1rangle langle0| + |1rangle langle0|.$$



                Now you might be wondering where this comes from. The term you're looking for is outer product representation of the $X$ gate. It follows from the spectral decomposition theorem (check Nielsen & Chuang 10th edition, p. 72) which holds for all normal operators. The key point:




                In terms of the outer product representation, this means that $M$ can be written as $M=sum_ilambda_i|iranglelangle i|$,where $lambda_i$ are the eigenvalues of $M$,$|irangle$ is an orthonormal basis for $V$, and each $|irangle$ an eigenvector of $M$ with eigenvalue $lambda_i$.




                The eigenvectors of the Pauli-$X$ gate are $-|0rangle+|1rangle$ and $|0rangle+|1rangle$, and the corresponding eigenvalues are $-1$ and $+1$ cf. Wolfram Alpha. Normalize the eigenvectors to get an orthonormal basis for $X$ i.e. $frac-sqrt2,fracsqrt2$. According the spectral decomposition theorem you can represent the $X$ gate as:



                $$-1(frac-sqrt2)(frac+langle1sqrt2) + 1(fracsqrt2)(frac+langle1sqrt2)$$
                $$=-frac12(|0ranglelangle0|-|0ranglelangle1|-|1ranglelangle0|+|1ranglelangle1|)+frac12(|0ranglelangle0|+|0ranglelangle1|+|1ranglelangle0|+|1ranglelangle1|)$$
                $$=|1rangle langle0| + |1rangle langle0|$$



                To convince you that this result is correct let's apply it on an arbitrary qubit state $c_0|0rangle+c_1 |1rangle$:



                $$(|1rangle langle0| + |0rangle langle1|)(c_0|0rangle+c_1|1rangle)$$
                $$=c_0|1ranglelangle0|0rangle+c_1|0ranglelangle 1|1rangle$$
                $$=c_0 |1rangle + c_1 |0rangle$$



                So yes, our result is correct and the bits were indeed flipped upon application of $X=|1rangle langle0| + |1rangle langle0|$ to $c_0|0rangle + c_1|1rangle$.The last step followed from the fact that $langle 0|0rangle$ and $langle 1|1rangle$ are both equal to $1$, as $|0rangle$ and $|1rangle$ are orthonormal vectors i.e. their inner product $langle psi|psirangle=1$ by definition.



                We're done. As an exercise, find the outer product representation of the Pauli-$Z$ gate by yourself. And definitely, do go through the proof of the spectral theorem in Nielsen and Chung if time permits!







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 38 mins ago

























                answered 56 mins ago









                Sanchayan DuttaSanchayan Dutta

                6,72341556




                6,72341556



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Quantum Computing Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5989%2fwhat-does-it-mean-to-express-a-gate-in-dirac-notation%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр