Problem of parity - Can we draw a closed path made up of 20 line segments…What am I getting for Christmas? Secret Santa and Graph theoryReturn of the lost ant 3DVariation of the opaque forest problem (a.k.a farmyard problem)A closed path is made up of 11 line segments. Can one line, not containing a vertex of the path, intersect each of its segments?Connecting $1997$ points in the plane- what am I missing?How many paths are there from point P to point Q if each step has to go closer to point Q.A problem involving divisibility , parity and extremely clever thinkingHow to go out from a circular forest if we are lost? Not the straight line?Does finding the line of tightest packing in a packing problem help?Cover the plane with closed disks

What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)

Why does Kotter return in Welcome Back Kotter?

Python: next in for loop

How could an uplifted falcon's brain work?

Problem of parity - Can we draw a closed path made up of 20 line segments...

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

"You are your self first supporter", a more proper way to say it

What do you call a Matrix-like slowdown and camera movement effect?

How can bays and straits be determined in a procedurally generated map?

Which models of the Boeing 737 are still in production?

Why Is Death Allowed In the Matrix?

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

How is it possible to have an ability score that is less than 3?

Finding angle with pure Geometry.

Email Account under attack (really) - anything I can do?

Why not use SQL instead of GraphQL?

Today is the Center

can i play a electric guitar through a bass amp?

Dragon forelimb placement

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Do VLANs within a subnet need to have their own subnet for router on a stick?

How does strength of boric acid solution increase in presence of salicylic acid?

How to find program name(s) of an installed package?



Problem of parity - Can we draw a closed path made up of 20 line segments…


What am I getting for Christmas? Secret Santa and Graph theoryReturn of the lost ant 3DVariation of the opaque forest problem (a.k.a farmyard problem)A closed path is made up of 11 line segments. Can one line, not containing a vertex of the path, intersect each of its segments?Connecting $1997$ points in the plane- what am I missing?How many paths are there from point P to point Q if each step has to go closer to point Q.A problem involving divisibility , parity and extremely clever thinkingHow to go out from a circular forest if we are lost? Not the straight line?Does finding the line of tightest packing in a packing problem help?Cover the plane with closed disks













3












$begingroup$


Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










share|cite|improve this question







New contributor




Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    3












    $begingroup$


    Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










    share|cite|improve this question







    New contributor




    Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      3












      3








      3





      $begingroup$


      Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?







      recreational-mathematics parity






      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 hours ago









      Luiz FariasLuiz Farias

      161




      161




      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            1 hour ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            49 mins ago











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            27 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            22 mins ago











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            1 min ago


















          1












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago


















          0












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            42 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            33 mins ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177522%2fproblem-of-parity-can-we-draw-a-closed-path-made-up-of-20-line-segments%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          3 Answers
          3






          active

          oldest

          votes








          3 Answers
          3






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            1 hour ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            49 mins ago











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            27 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            22 mins ago











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            1 min ago















          3












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            1 hour ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            49 mins ago











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            27 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            22 mins ago











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            1 min ago













          3












          3








          3





          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$



          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          HenryHenry

          101k482170




          101k482170







          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            1 hour ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            49 mins ago











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            27 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            22 mins ago











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            1 min ago












          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            1 hour ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            49 mins ago











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            27 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            22 mins ago











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            1 min ago







          1




          1




          $begingroup$
          Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
          $endgroup$
          – John Hughes
          1 hour ago




          $begingroup$
          Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
          $endgroup$
          – John Hughes
          1 hour ago




          1




          1




          $begingroup$
          Bravo! (+1).... the key seems to be reversing chirality.
          $endgroup$
          – David G. Stork
          49 mins ago





          $begingroup$
          Bravo! (+1).... the key seems to be reversing chirality.
          $endgroup$
          – David G. Stork
          49 mins ago













          $begingroup$
          It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
          $endgroup$
          – Henry
          27 mins ago




          $begingroup$
          It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
          $endgroup$
          – Henry
          27 mins ago












          $begingroup$
          @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
          $endgroup$
          – David G. Stork
          22 mins ago





          $begingroup$
          @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
          $endgroup$
          – David G. Stork
          22 mins ago













          $begingroup$
          @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
          $endgroup$
          – Henry
          1 min ago




          $begingroup$
          @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
          $endgroup$
          – Henry
          1 min ago











          1












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago















          1












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago













          1












          1








          1





          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$



          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 46 mins ago

























          answered 1 hour ago









          David G. StorkDavid G. Stork

          12k41735




          12k41735







          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago












          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago







          1




          1




          $begingroup$
          Indeed - you seem to use $9$ being odd, though $10$ is not
          $endgroup$
          – Henry
          1 hour ago




          $begingroup$
          Indeed - you seem to use $9$ being odd, though $10$ is not
          $endgroup$
          – Henry
          1 hour ago











          0












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            42 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            33 mins ago















          0












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            42 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            33 mins ago













          0












          0








          0





          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$



          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          John HughesJohn Hughes

          65.2k24293




          65.2k24293











          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            42 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            33 mins ago
















          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            42 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            33 mins ago















          $begingroup$
          I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
          $endgroup$
          – David G. Stork
          42 mins ago




          $begingroup$
          I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
          $endgroup$
          – David G. Stork
          42 mins ago












          $begingroup$
          You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
          $endgroup$
          – John Hughes
          33 mins ago




          $begingroup$
          You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
          $endgroup$
          – John Hughes
          33 mins ago










          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.












          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.











          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177522%2fproblem-of-parity-can-we-draw-a-closed-path-made-up-of-20-line-segments%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

          Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

          Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр