A Standard Integral EquationLinear versus non-linear integral equationsUnderstanding why the roots of homogeneous difference equation must be eigenvaluesIntegral equation solution: $y(x) = 1 + lambdaintlimits_0^2cos(x-t) y(t) mathrmdt$Integrating with respect to time a double derivative $ddotphi + frac bmdotphi = fracFmr$Integral with Bessel FunctionsEigenvalue problem for integrals in multiple dimensionsStuck on finding the $2times 2$ system of differential equationsConversion of second order ode into integral equationSolving a dual integral equation involving a zeroth-order Bessel functionHow to find a basis of eigenvectors??
The One-Electron Universe postulate is true - what simple change can I make to change the whole universe?
Books on the History of math research at European universities
Can I create an upright 7-foot × 5-foot wall with the Minor Illusion spell?
Is it okay / does it make sense for another player to join a running game of Munchkin?
Can somebody explain Brexit in a few child-proof sentences?
How do ultrasonic sensors differentiate between transmitted and received signals?
A workplace installs custom certificates on personal devices, can this be used to decrypt HTTPS traffic?
Teaching indefinite integrals that require special-casing
How can I successfully establish a nationwide combat training program for a large country?
Did US corporations pay demonstrators in the German demonstrations against article 13?
Is infinity mathematically observable?
What to do when my ideas aren't chosen, when I strongly disagree with the chosen solution?
Indicating multiple different modes of speech (fantasy language or telepathy)
Is there a problem with hiding "forgot password" until it's needed?
Is there an Impartial Brexit Deal comparison site?
Are Warlocks Arcane or Divine?
Proof of Lemma: Every integer can be written as a product of primes
Can a malicious addon access internet history and such in chrome/firefox?
How to prevent YouTube from showing already watched videos?
Have I saved too much for retirement so far?
Can a Bard use an arcane focus?
Lifted its hind leg on or lifted its hind leg towards?
Why does this part of the Space Shuttle launch pad seem to be floating in air?
Who must act to prevent Brexit on March 29th?
A Standard Integral Equation
Linear versus non-linear integral equationsUnderstanding why the roots of homogeneous difference equation must be eigenvaluesIntegral equation solution: $y(x) = 1 + lambdaintlimits_0^2cos(x-t) y(t) mathrmdt$Integrating with respect to time a double derivative $ddotphi + frac bmdotphi = fracFmr$Integral with Bessel FunctionsEigenvalue problem for integrals in multiple dimensionsStuck on finding the $2times 2$ system of differential equationsConversion of second order ode into integral equationSolving a dual integral equation involving a zeroth-order Bessel functionHow to find a basis of eigenvectors??
$begingroup$
Consider the integral equation
$$phi(x) = x + lambdaint_0^1 phi(s),ds$$
Integrating with respect to $x$ from $x=0$ to $x=1$:
$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$
which is equivalent to
$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$
How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?
linear-algebra integration matrix-equations
$endgroup$
add a comment |
$begingroup$
Consider the integral equation
$$phi(x) = x + lambdaint_0^1 phi(s),ds$$
Integrating with respect to $x$ from $x=0$ to $x=1$:
$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$
which is equivalent to
$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$
How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?
linear-algebra integration matrix-equations
$endgroup$
1
$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
11 hours ago
$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
11 hours ago
add a comment |
$begingroup$
Consider the integral equation
$$phi(x) = x + lambdaint_0^1 phi(s),ds$$
Integrating with respect to $x$ from $x=0$ to $x=1$:
$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$
which is equivalent to
$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$
How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?
linear-algebra integration matrix-equations
$endgroup$
Consider the integral equation
$$phi(x) = x + lambdaint_0^1 phi(s),ds$$
Integrating with respect to $x$ from $x=0$ to $x=1$:
$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$
which is equivalent to
$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$
How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?
linear-algebra integration matrix-equations
linear-algebra integration matrix-equations
edited 11 hours ago
LightningStrike
asked 11 hours ago
LightningStrikeLightningStrike
455
455
1
$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
11 hours ago
$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
11 hours ago
add a comment |
1
$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
11 hours ago
$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
11 hours ago
1
1
$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
11 hours ago
$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
11 hours ago
$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
11 hours ago
$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
11 hours ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$
Thus $$phi(x)=x+fraclambda2(1-lambda)$$
$endgroup$
add a comment |
$begingroup$
Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
Putting into FE yields:
$$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
If $lambda=0$ then $phi(x)=x$
if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$
If $lambda=1$ there won’t besuch $phi$.
$endgroup$
add a comment |
$begingroup$
If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
$$
phi(x) = sum_n geq 0 a_n x^n.
$$
Substituting it into your equation, we get:
$$
sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
$$
Matching up the coefficients of the difference powers of $x$, we get:
$$
a_n = 0 quad mbox for n geq 2,
$$
$$
a_1 = 1,
$$
and
$$
a_0 = lambda left(a_0 + a_1 over 2right).
$$
This gives a relationship between $a_0$ and $lambda$.
$endgroup$
add a comment |
$begingroup$
Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162106%2fa-standard-integral-equation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$
Thus $$phi(x)=x+fraclambda2(1-lambda)$$
$endgroup$
add a comment |
$begingroup$
Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$
Thus $$phi(x)=x+fraclambda2(1-lambda)$$
$endgroup$
add a comment |
$begingroup$
Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$
Thus $$phi(x)=x+fraclambda2(1-lambda)$$
$endgroup$
Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$
Thus $$phi(x)=x+fraclambda2(1-lambda)$$
answered 11 hours ago
John DoeJohn Doe
11.3k11239
11.3k11239
add a comment |
add a comment |
$begingroup$
Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
Putting into FE yields:
$$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
If $lambda=0$ then $phi(x)=x$
if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$
If $lambda=1$ there won’t besuch $phi$.
$endgroup$
add a comment |
$begingroup$
Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
Putting into FE yields:
$$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
If $lambda=0$ then $phi(x)=x$
if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$
If $lambda=1$ there won’t besuch $phi$.
$endgroup$
add a comment |
$begingroup$
Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
Putting into FE yields:
$$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
If $lambda=0$ then $phi(x)=x$
if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$
If $lambda=1$ there won’t besuch $phi$.
$endgroup$
Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
Putting into FE yields:
$$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
If $lambda=0$ then $phi(x)=x$
if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$
If $lambda=1$ there won’t besuch $phi$.
answered 11 hours ago
HAMIDINE SOUMAREHAMIDINE SOUMARE
1,468211
1,468211
add a comment |
add a comment |
$begingroup$
If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
$$
phi(x) = sum_n geq 0 a_n x^n.
$$
Substituting it into your equation, we get:
$$
sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
$$
Matching up the coefficients of the difference powers of $x$, we get:
$$
a_n = 0 quad mbox for n geq 2,
$$
$$
a_1 = 1,
$$
and
$$
a_0 = lambda left(a_0 + a_1 over 2right).
$$
This gives a relationship between $a_0$ and $lambda$.
$endgroup$
add a comment |
$begingroup$
If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
$$
phi(x) = sum_n geq 0 a_n x^n.
$$
Substituting it into your equation, we get:
$$
sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
$$
Matching up the coefficients of the difference powers of $x$, we get:
$$
a_n = 0 quad mbox for n geq 2,
$$
$$
a_1 = 1,
$$
and
$$
a_0 = lambda left(a_0 + a_1 over 2right).
$$
This gives a relationship between $a_0$ and $lambda$.
$endgroup$
add a comment |
$begingroup$
If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
$$
phi(x) = sum_n geq 0 a_n x^n.
$$
Substituting it into your equation, we get:
$$
sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
$$
Matching up the coefficients of the difference powers of $x$, we get:
$$
a_n = 0 quad mbox for n geq 2,
$$
$$
a_1 = 1,
$$
and
$$
a_0 = lambda left(a_0 + a_1 over 2right).
$$
This gives a relationship between $a_0$ and $lambda$.
$endgroup$
If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
$$
phi(x) = sum_n geq 0 a_n x^n.
$$
Substituting it into your equation, we get:
$$
sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
$$
Matching up the coefficients of the difference powers of $x$, we get:
$$
a_n = 0 quad mbox for n geq 2,
$$
$$
a_1 = 1,
$$
and
$$
a_0 = lambda left(a_0 + a_1 over 2right).
$$
This gives a relationship between $a_0$ and $lambda$.
answered 11 hours ago
avsavs
3,789514
3,789514
add a comment |
add a comment |
$begingroup$
Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.
$endgroup$
add a comment |
$begingroup$
Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.
$endgroup$
add a comment |
$begingroup$
Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.
$endgroup$
Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.
answered 11 hours ago
Mostafa AyazMostafa Ayaz
17.6k31039
17.6k31039
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162106%2fa-standard-integral-equation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
11 hours ago
$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
11 hours ago