Is infinity mathematically observable?Does Pi contain all possible number combinations?What did Gauss think about infinity?Cantor, longish lines and the Landau -o notationsAre there mathematical objects that have been proved to exist but cannot be described in words?Concept of infinity: Infinity - InfinityInfinity minus infinity?Seemingly Simple Finding Constraints on Values in Difference of Geometric MeansFinding the two planes that contain a given line and form the same angle with two other linesmathematization of infinityIs there any integer-infinity?Intuition for Integration and Starting Points

In Star Trek IV, why did the Bounty go back to a time when whales were already rare?

What does 権威 mean when referring to goods?

Teaching indefinite integrals that require special-casing

Superhero words!

Calculating the number of days between 2 dates in Excel

Is a naturally all "male" species possible?

What do you call the infoboxes with text and sometimes images on the side of a page we find in textbooks?

Did US corporations pay demonstrators in the German demonstrations against article 13?

How will losing mobility of one hand affect my career as a programmer?

Indicating multiple different modes of speech (fantasy language or telepathy)

Partial sums of primes

Word describing multiple paths to the same abstract outcome

What to do when my ideas aren't chosen, when I strongly disagree with the chosen solution?

Stereotypical names

Is infinity mathematically observable?

What does the "3am" section means in manpages?

Can I rely on these GitHub repository files?

I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?

Can a Gentile theist be saved?

My boss asked me to take a one-day class, then signs it up as a day off

Can the harmonic series explain the origin of the major scale?

I2C signal and power over long range (10meter cable)

How can I successfully establish a nationwide combat training program for a large country?

Adding empty element to declared container without declaring type of element



Is infinity mathematically observable?


Does Pi contain all possible number combinations?What did Gauss think about infinity?Cantor, longish lines and the Landau -o notationsAre there mathematical objects that have been proved to exist but cannot be described in words?Concept of infinity: Infinity - InfinityInfinity minus infinity?Seemingly Simple Finding Constraints on Values in Difference of Geometric MeansFinding the two planes that contain a given line and form the same angle with two other linesmathematization of infinityIs there any integer-infinity?Intuition for Integration and Starting Points













6












$begingroup$


I have a little question. In fact, is too short.




Is infinity observable? (Can infinity be observed?)




I would like to explain it by example because the question seems unclear in this way.



A simple example:




$sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




By mathematical definition,



Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




Or other combinations can be equal,



$$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



Here, $sqrt 2$ is an only simple example. The question is not just
$sqrt 2$.




Generalization of the question is :



For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



Sorry about the grammar and translation errors in my English.



Thank you very much.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Possible duplicate of Does Pi contain all possible number combinations?
    $endgroup$
    – Xander Henderson
    2 hours ago










  • $begingroup$
    arxiv.org/abs/math/0411418
    $endgroup$
    – Count Iblis
    2 hours ago






  • 3




    $begingroup$
    I see two questions here, and they are not the same question. The first question is, "Is infinity mathematically observable?" The second question is, "Do irrational numbers contain every possible sequence of digits?" Which of these two questions is the one you intend to ask?
    $endgroup$
    – Tanner Swett
    2 hours ago










  • $begingroup$
    What exactly do you mean by "observable" here? It's also not exactly clear what "infinity" means in this context either; it means many different things in many different mathematical fields.
    $endgroup$
    – Theo Bendit
    20 mins ago















6












$begingroup$


I have a little question. In fact, is too short.




Is infinity observable? (Can infinity be observed?)




I would like to explain it by example because the question seems unclear in this way.



A simple example:




$sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




By mathematical definition,



Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




Or other combinations can be equal,



$$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



Here, $sqrt 2$ is an only simple example. The question is not just
$sqrt 2$.




Generalization of the question is :



For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



Sorry about the grammar and translation errors in my English.



Thank you very much.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Possible duplicate of Does Pi contain all possible number combinations?
    $endgroup$
    – Xander Henderson
    2 hours ago










  • $begingroup$
    arxiv.org/abs/math/0411418
    $endgroup$
    – Count Iblis
    2 hours ago






  • 3




    $begingroup$
    I see two questions here, and they are not the same question. The first question is, "Is infinity mathematically observable?" The second question is, "Do irrational numbers contain every possible sequence of digits?" Which of these two questions is the one you intend to ask?
    $endgroup$
    – Tanner Swett
    2 hours ago










  • $begingroup$
    What exactly do you mean by "observable" here? It's also not exactly clear what "infinity" means in this context either; it means many different things in many different mathematical fields.
    $endgroup$
    – Theo Bendit
    20 mins ago













6












6








6


1



$begingroup$


I have a little question. In fact, is too short.




Is infinity observable? (Can infinity be observed?)




I would like to explain it by example because the question seems unclear in this way.



A simple example:




$sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




By mathematical definition,



Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




Or other combinations can be equal,



$$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



Here, $sqrt 2$ is an only simple example. The question is not just
$sqrt 2$.




Generalization of the question is :



For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



Sorry about the grammar and translation errors in my English.



Thank you very much.










share|cite|improve this question











$endgroup$




I have a little question. In fact, is too short.




Is infinity observable? (Can infinity be observed?)




I would like to explain it by example because the question seems unclear in this way.



A simple example:




$sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




By mathematical definition,



Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




Or other combinations can be equal,



$$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



Here, $sqrt 2$ is an only simple example. The question is not just
$sqrt 2$.




Generalization of the question is :



For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



Sorry about the grammar and translation errors in my English.



Thank you very much.







algebra-precalculus soft-question math-history infinity irrational-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 6 hours ago







Student

















asked 6 hours ago









StudentStudent

6671418




6671418







  • 1




    $begingroup$
    Possible duplicate of Does Pi contain all possible number combinations?
    $endgroup$
    – Xander Henderson
    2 hours ago










  • $begingroup$
    arxiv.org/abs/math/0411418
    $endgroup$
    – Count Iblis
    2 hours ago






  • 3




    $begingroup$
    I see two questions here, and they are not the same question. The first question is, "Is infinity mathematically observable?" The second question is, "Do irrational numbers contain every possible sequence of digits?" Which of these two questions is the one you intend to ask?
    $endgroup$
    – Tanner Swett
    2 hours ago










  • $begingroup$
    What exactly do you mean by "observable" here? It's also not exactly clear what "infinity" means in this context either; it means many different things in many different mathematical fields.
    $endgroup$
    – Theo Bendit
    20 mins ago












  • 1




    $begingroup$
    Possible duplicate of Does Pi contain all possible number combinations?
    $endgroup$
    – Xander Henderson
    2 hours ago










  • $begingroup$
    arxiv.org/abs/math/0411418
    $endgroup$
    – Count Iblis
    2 hours ago






  • 3




    $begingroup$
    I see two questions here, and they are not the same question. The first question is, "Is infinity mathematically observable?" The second question is, "Do irrational numbers contain every possible sequence of digits?" Which of these two questions is the one you intend to ask?
    $endgroup$
    – Tanner Swett
    2 hours ago










  • $begingroup$
    What exactly do you mean by "observable" here? It's also not exactly clear what "infinity" means in this context either; it means many different things in many different mathematical fields.
    $endgroup$
    – Theo Bendit
    20 mins ago







1




1




$begingroup$
Possible duplicate of Does Pi contain all possible number combinations?
$endgroup$
– Xander Henderson
2 hours ago




$begingroup$
Possible duplicate of Does Pi contain all possible number combinations?
$endgroup$
– Xander Henderson
2 hours ago












$begingroup$
arxiv.org/abs/math/0411418
$endgroup$
– Count Iblis
2 hours ago




$begingroup$
arxiv.org/abs/math/0411418
$endgroup$
– Count Iblis
2 hours ago




3




3




$begingroup$
I see two questions here, and they are not the same question. The first question is, "Is infinity mathematically observable?" The second question is, "Do irrational numbers contain every possible sequence of digits?" Which of these two questions is the one you intend to ask?
$endgroup$
– Tanner Swett
2 hours ago




$begingroup$
I see two questions here, and they are not the same question. The first question is, "Is infinity mathematically observable?" The second question is, "Do irrational numbers contain every possible sequence of digits?" Which of these two questions is the one you intend to ask?
$endgroup$
– Tanner Swett
2 hours ago












$begingroup$
What exactly do you mean by "observable" here? It's also not exactly clear what "infinity" means in this context either; it means many different things in many different mathematical fields.
$endgroup$
– Theo Bendit
20 mins ago




$begingroup$
What exactly do you mean by "observable" here? It's also not exactly clear what "infinity" means in this context either; it means many different things in many different mathematical fields.
$endgroup$
– Theo Bendit
20 mins ago










2 Answers
2






active

oldest

votes


















11












$begingroup$

Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Well, for $e$ is it possible?
    $endgroup$
    – Student
    6 hours ago










  • $begingroup$
    $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
    $endgroup$
    – Eevee Trainer
    6 hours ago










  • $begingroup$
    By curious coincidence, I just happened to watch this numberphile video that talks about normal numbers a couple hours ago.
    $endgroup$
    – Paul Sinclair
    3 hours ago










  • $begingroup$
    You said "you might wan to check it out", I think you mean "want" instead of "wan".
    $endgroup$
    – numbermaniac
    33 mins ago


















7












$begingroup$

Less an answer than an extended comment:




This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



$$0.12345678910111213141516171819202122232425...$$



It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Is it known a non-normal number?
    $endgroup$
    – Student
    5 hours ago






  • 1




    $begingroup$
    Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
    $endgroup$
    – Eevee Trainer
    5 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162396%2fis-infinity-mathematically-observable%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









11












$begingroup$

Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Well, for $e$ is it possible?
    $endgroup$
    – Student
    6 hours ago










  • $begingroup$
    $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
    $endgroup$
    – Eevee Trainer
    6 hours ago










  • $begingroup$
    By curious coincidence, I just happened to watch this numberphile video that talks about normal numbers a couple hours ago.
    $endgroup$
    – Paul Sinclair
    3 hours ago










  • $begingroup$
    You said "you might wan to check it out", I think you mean "want" instead of "wan".
    $endgroup$
    – numbermaniac
    33 mins ago















11












$begingroup$

Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Well, for $e$ is it possible?
    $endgroup$
    – Student
    6 hours ago










  • $begingroup$
    $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
    $endgroup$
    – Eevee Trainer
    6 hours ago










  • $begingroup$
    By curious coincidence, I just happened to watch this numberphile video that talks about normal numbers a couple hours ago.
    $endgroup$
    – Paul Sinclair
    3 hours ago










  • $begingroup$
    You said "you might wan to check it out", I think you mean "want" instead of "wan".
    $endgroup$
    – numbermaniac
    33 mins ago













11












11








11





$begingroup$

Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






share|cite|improve this answer











$endgroup$



Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 6 hours ago

























answered 6 hours ago









SilSil

5,49021645




5,49021645











  • $begingroup$
    Well, for $e$ is it possible?
    $endgroup$
    – Student
    6 hours ago










  • $begingroup$
    $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
    $endgroup$
    – Eevee Trainer
    6 hours ago










  • $begingroup$
    By curious coincidence, I just happened to watch this numberphile video that talks about normal numbers a couple hours ago.
    $endgroup$
    – Paul Sinclair
    3 hours ago










  • $begingroup$
    You said "you might wan to check it out", I think you mean "want" instead of "wan".
    $endgroup$
    – numbermaniac
    33 mins ago
















  • $begingroup$
    Well, for $e$ is it possible?
    $endgroup$
    – Student
    6 hours ago










  • $begingroup$
    $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
    $endgroup$
    – Eevee Trainer
    6 hours ago










  • $begingroup$
    By curious coincidence, I just happened to watch this numberphile video that talks about normal numbers a couple hours ago.
    $endgroup$
    – Paul Sinclair
    3 hours ago










  • $begingroup$
    You said "you might wan to check it out", I think you mean "want" instead of "wan".
    $endgroup$
    – numbermaniac
    33 mins ago















$begingroup$
Well, for $e$ is it possible?
$endgroup$
– Student
6 hours ago




$begingroup$
Well, for $e$ is it possible?
$endgroup$
– Student
6 hours ago












$begingroup$
$e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
$endgroup$
– Eevee Trainer
6 hours ago




$begingroup$
$e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
$endgroup$
– Eevee Trainer
6 hours ago












$begingroup$
By curious coincidence, I just happened to watch this numberphile video that talks about normal numbers a couple hours ago.
$endgroup$
– Paul Sinclair
3 hours ago




$begingroup$
By curious coincidence, I just happened to watch this numberphile video that talks about normal numbers a couple hours ago.
$endgroup$
– Paul Sinclair
3 hours ago












$begingroup$
You said "you might wan to check it out", I think you mean "want" instead of "wan".
$endgroup$
– numbermaniac
33 mins ago




$begingroup$
You said "you might wan to check it out", I think you mean "want" instead of "wan".
$endgroup$
– numbermaniac
33 mins ago











7












$begingroup$

Less an answer than an extended comment:




This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



$$0.12345678910111213141516171819202122232425...$$



It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Is it known a non-normal number?
    $endgroup$
    – Student
    5 hours ago






  • 1




    $begingroup$
    Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
    $endgroup$
    – Eevee Trainer
    5 hours ago















7












$begingroup$

Less an answer than an extended comment:




This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



$$0.12345678910111213141516171819202122232425...$$



It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Is it known a non-normal number?
    $endgroup$
    – Student
    5 hours ago






  • 1




    $begingroup$
    Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
    $endgroup$
    – Eevee Trainer
    5 hours ago













7












7








7





$begingroup$

Less an answer than an extended comment:




This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



$$0.12345678910111213141516171819202122232425...$$



It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






share|cite|improve this answer









$endgroup$



Less an answer than an extended comment:




This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



$$0.12345678910111213141516171819202122232425...$$



It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 6 hours ago









Eevee TrainerEevee Trainer

8,51421439




8,51421439











  • $begingroup$
    Is it known a non-normal number?
    $endgroup$
    – Student
    5 hours ago






  • 1




    $begingroup$
    Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
    $endgroup$
    – Eevee Trainer
    5 hours ago
















  • $begingroup$
    Is it known a non-normal number?
    $endgroup$
    – Student
    5 hours ago






  • 1




    $begingroup$
    Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
    $endgroup$
    – Eevee Trainer
    5 hours ago















$begingroup$
Is it known a non-normal number?
$endgroup$
– Student
5 hours ago




$begingroup$
Is it known a non-normal number?
$endgroup$
– Student
5 hours ago




1




1




$begingroup$
Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
$endgroup$
– Eevee Trainer
5 hours ago




$begingroup$
Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
$endgroup$
– Eevee Trainer
5 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162396%2fis-infinity-mathematically-observable%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр