Dominated convergence theorem - what sequence? The Next CEO of Stack OverflowWhat are some good integration problems where you can use some of the function convergence theorem of Lesbegue integrals?Find Limit Using Lebesgue Dominated ConvergenceSolving these types of integrals, using Monotone convergence theorem and Dominated convergence theorem.Applications of Dominated/Monotone convergence theoremLebesgue Dominated Convergence Theorem exampleDominated convergence theorem for log-integrable rational functionsuniform or dominated convergence of sequence of functions which are boundedBartle's proof of Lebesgue Dominated Convergence TheoremCalculate the limit using dominated or monotone convergence theoremUsing dominated convergence theorem to move limit inside the integral

I want to delete every two lines after 3rd lines in file contain very large number of lines :

Reference request: Grassmannian and Plucker coordinates in type B, C, D

Grabbing quick drinks

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

Flying from Cape Town to England and return to another province

What did we know about the Kessel run before the prequels?

Why isn't the Mueller report being released completely and unredacted?

Legal workarounds for testamentary trust perceived as unfair

What happened in Rome, when the western empire "fell"?

How to prove a simple equation?

How to count occurrences of text in a file?

Rotate a column

Would a completely good Muggle be able to use a wand?

Can you be charged for obstruction for refusing to answer questions?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Solving system of ODEs with extra parameter

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

Should I tutor a student who I know has cheated on their homework?

Domestic-to-international connection at Orlando (MCO)

Proper way to express "He disappeared them"

Is it convenient to ask the journal's editor for two additional days to complete a review?

Why the difference in type-inference over the as-pattern in two similar function definitions?

Why don't programming languages automatically manage the synchronous/asynchronous problem?



Dominated convergence theorem - what sequence?



The Next CEO of Stack OverflowWhat are some good integration problems where you can use some of the function convergence theorem of Lesbegue integrals?Find Limit Using Lebesgue Dominated ConvergenceSolving these types of integrals, using Monotone convergence theorem and Dominated convergence theorem.Applications of Dominated/Monotone convergence theoremLebesgue Dominated Convergence Theorem exampleDominated convergence theorem for log-integrable rational functionsuniform or dominated convergence of sequence of functions which are boundedBartle's proof of Lebesgue Dominated Convergence TheoremCalculate the limit using dominated or monotone convergence theoremUsing dominated convergence theorem to move limit inside the integral










2












$begingroup$


Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
$$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
    $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
    Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



    P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
      $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
      Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



      P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










      share|cite|improve this question









      $endgroup$




      Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
      $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
      Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



      P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!







      integration limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 6 hours ago









      Ivan V.Ivan V.

      931216




      931216




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          The statement of the dominated convergence theorem (DCT) is as follows:




          "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
          $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




          (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



          As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




          Proposition. If $f$ is a function, then
          $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




          With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




          "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
          $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




          The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
            $endgroup$
            – Ivan V.
            3 hours ago










          • $begingroup$
            @IvanV.: Yes, that's correct!
            $endgroup$
            – Alex Ortiz
            2 hours ago










          • $begingroup$
            Alright, thank you, much appreciated!
            $endgroup$
            – Ivan V.
            1 hour ago


















          2












          $begingroup$

          Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



          This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



          And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168778%2fdominated-convergence-theorem-what-sequence%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              3 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              2 hours ago










            • $begingroup$
              Alright, thank you, much appreciated!
              $endgroup$
              – Ivan V.
              1 hour ago















            3












            $begingroup$

            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              3 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              2 hours ago










            • $begingroup$
              Alright, thank you, much appreciated!
              $endgroup$
              – Ivan V.
              1 hour ago













            3












            3








            3





            $begingroup$

            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






            share|cite|improve this answer











            $endgroup$



            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 5 hours ago

























            answered 5 hours ago









            Alex OrtizAlex Ortiz

            11.2k21441




            11.2k21441











            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              3 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              2 hours ago










            • $begingroup$
              Alright, thank you, much appreciated!
              $endgroup$
              – Ivan V.
              1 hour ago
















            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              3 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              2 hours ago










            • $begingroup$
              Alright, thank you, much appreciated!
              $endgroup$
              – Ivan V.
              1 hour ago















            $begingroup$
            Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
            $endgroup$
            – Ivan V.
            3 hours ago




            $begingroup$
            Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
            $endgroup$
            – Ivan V.
            3 hours ago












            $begingroup$
            @IvanV.: Yes, that's correct!
            $endgroup$
            – Alex Ortiz
            2 hours ago




            $begingroup$
            @IvanV.: Yes, that's correct!
            $endgroup$
            – Alex Ortiz
            2 hours ago












            $begingroup$
            Alright, thank you, much appreciated!
            $endgroup$
            – Ivan V.
            1 hour ago




            $begingroup$
            Alright, thank you, much appreciated!
            $endgroup$
            – Ivan V.
            1 hour ago











            2












            $begingroup$

            Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



            This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



            And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



              This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



              And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



                This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



                And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






                share|cite|improve this answer









                $endgroup$



                Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



                This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



                And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 5 hours ago









                Saucy O'PathSaucy O'Path

                6,2141627




                6,2141627



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168778%2fdominated-convergence-theorem-what-sequence%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр