How to preserve electronics (computers, ipads, phones) for hundreds of years?How long could we preserve technology post-apocalypse?How might modern humans leave a message for 50,000 years?How do we make computers care for human life?Keeping supplies for 1000 yearsWhat will cell phones become in 100 years?How to preserve blood with medieval tech?What body armor protects against a laser?Could a society attain 1800s technology if limited to using copper and bronze?Moving between levels in a gigantic tower-world?Why would precursors create devices that can survive and still work after hundreds of years?A 500 years vault for books?

PTIJ: Which Dr. Seuss books should one obtain?

1 John in Luther’s Bibel

What is the meaning of "You've never met a graph you didn't like?"

How to test the sharpness of a knife?

Showing mass murder in a kid's book

Non-Borel set in arbitrary metric space

Is this saw blade faulty?

Weird lines in Microsoft Word

Magnifying glass in hyperbolic space

Are all namekians brothers?

Mortal danger in mid-grade literature

Derivative of an interpolated function

What is the purpose of using a decision tree?

Why is "la Gestapo" feminine?

Hashing password to increase entropy

How do I prevent inappropriate ads from appearing in my game?

Travelling in US for more than 90 days

Can you describe someone as luxurious? As in someone who likes luxurious things?

categorizing a variable turns it from insignificant to significant

How to split IPA spelling into syllables

Would a primitive species be able to learn English from reading books alone?

Why is implicit conversion not ambiguous for non-primitive types?

Output visual diagram of picture

A seasonal riddle



How to preserve electronics (computers, ipads, phones) for hundreds of years?


How long could we preserve technology post-apocalypse?How might modern humans leave a message for 50,000 years?How do we make computers care for human life?Keeping supplies for 1000 yearsWhat will cell phones become in 100 years?How to preserve blood with medieval tech?What body armor protects against a laser?Could a society attain 1800s technology if limited to using copper and bronze?Moving between levels in a gigantic tower-world?Why would precursors create devices that can survive and still work after hundreds of years?A 500 years vault for books?













10












$begingroup$


Let's say you wanted to preserve some electronics for 500 years or more in a museum. What could you do to preserve them in working order for hundreds of years? Deep freeze? Lead lined vaults? Vacuum? I've seen questions about how long electronics would last left unattended, but not how to proactively protect them for 500 years.



Edit #1 - Let's say this is a fully functioning world, not a post apocalyptic world. Think of a museum in the future.










share|improve this question











$endgroup$







  • 1




    $begingroup$
    Possible duplicate of How long could we preserve technology post-apocalypse?
    $endgroup$
    – JBH
    10 hours ago






  • 1




    $begingroup$
    I read that question and nobody gave an answer that satisfies my answer. The answer that was selected didn't provide specific technologies to preserve electronics. Let's say this is a museum that wants to keep ancient tech working. I didn't see that in the question you cite. The question possible duplicate question talks about post apocalyptic world. Let's say this is a Utopian world with fully functioning infrastructure.
    $endgroup$
    – farmersteve
    10 hours ago







  • 1




    $begingroup$
    @JBH The answer space for these two questions is different; answers there are unlikely to be applicable here, and vice versa. These are not duplicates.
    $endgroup$
    – Frostfyre
    10 hours ago










  • $begingroup$
    @Frostfyre, They appear to be a complete overlap to me. How do they differ?
    $endgroup$
    – JBH
    8 hours ago






  • 5




    $begingroup$
    @JBH Well, as the question specifically mentions : unattended vs proactive protection.
    $endgroup$
    – Ville Niemi
    8 hours ago















10












$begingroup$


Let's say you wanted to preserve some electronics for 500 years or more in a museum. What could you do to preserve them in working order for hundreds of years? Deep freeze? Lead lined vaults? Vacuum? I've seen questions about how long electronics would last left unattended, but not how to proactively protect them for 500 years.



Edit #1 - Let's say this is a fully functioning world, not a post apocalyptic world. Think of a museum in the future.










share|improve this question











$endgroup$







  • 1




    $begingroup$
    Possible duplicate of How long could we preserve technology post-apocalypse?
    $endgroup$
    – JBH
    10 hours ago






  • 1




    $begingroup$
    I read that question and nobody gave an answer that satisfies my answer. The answer that was selected didn't provide specific technologies to preserve electronics. Let's say this is a museum that wants to keep ancient tech working. I didn't see that in the question you cite. The question possible duplicate question talks about post apocalyptic world. Let's say this is a Utopian world with fully functioning infrastructure.
    $endgroup$
    – farmersteve
    10 hours ago







  • 1




    $begingroup$
    @JBH The answer space for these two questions is different; answers there are unlikely to be applicable here, and vice versa. These are not duplicates.
    $endgroup$
    – Frostfyre
    10 hours ago










  • $begingroup$
    @Frostfyre, They appear to be a complete overlap to me. How do they differ?
    $endgroup$
    – JBH
    8 hours ago






  • 5




    $begingroup$
    @JBH Well, as the question specifically mentions : unattended vs proactive protection.
    $endgroup$
    – Ville Niemi
    8 hours ago













10












10








10





$begingroup$


Let's say you wanted to preserve some electronics for 500 years or more in a museum. What could you do to preserve them in working order for hundreds of years? Deep freeze? Lead lined vaults? Vacuum? I've seen questions about how long electronics would last left unattended, but not how to proactively protect them for 500 years.



Edit #1 - Let's say this is a fully functioning world, not a post apocalyptic world. Think of a museum in the future.










share|improve this question











$endgroup$




Let's say you wanted to preserve some electronics for 500 years or more in a museum. What could you do to preserve them in working order for hundreds of years? Deep freeze? Lead lined vaults? Vacuum? I've seen questions about how long electronics would last left unattended, but not how to proactively protect them for 500 years.



Edit #1 - Let's say this is a fully functioning world, not a post apocalyptic world. Think of a museum in the future.







technology preservation






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 hours ago









Jasper

3,1771029




3,1771029










asked 11 hours ago









farmerstevefarmersteve

1816




1816







  • 1




    $begingroup$
    Possible duplicate of How long could we preserve technology post-apocalypse?
    $endgroup$
    – JBH
    10 hours ago






  • 1




    $begingroup$
    I read that question and nobody gave an answer that satisfies my answer. The answer that was selected didn't provide specific technologies to preserve electronics. Let's say this is a museum that wants to keep ancient tech working. I didn't see that in the question you cite. The question possible duplicate question talks about post apocalyptic world. Let's say this is a Utopian world with fully functioning infrastructure.
    $endgroup$
    – farmersteve
    10 hours ago







  • 1




    $begingroup$
    @JBH The answer space for these two questions is different; answers there are unlikely to be applicable here, and vice versa. These are not duplicates.
    $endgroup$
    – Frostfyre
    10 hours ago










  • $begingroup$
    @Frostfyre, They appear to be a complete overlap to me. How do they differ?
    $endgroup$
    – JBH
    8 hours ago






  • 5




    $begingroup$
    @JBH Well, as the question specifically mentions : unattended vs proactive protection.
    $endgroup$
    – Ville Niemi
    8 hours ago












  • 1




    $begingroup$
    Possible duplicate of How long could we preserve technology post-apocalypse?
    $endgroup$
    – JBH
    10 hours ago






  • 1




    $begingroup$
    I read that question and nobody gave an answer that satisfies my answer. The answer that was selected didn't provide specific technologies to preserve electronics. Let's say this is a museum that wants to keep ancient tech working. I didn't see that in the question you cite. The question possible duplicate question talks about post apocalyptic world. Let's say this is a Utopian world with fully functioning infrastructure.
    $endgroup$
    – farmersteve
    10 hours ago







  • 1




    $begingroup$
    @JBH The answer space for these two questions is different; answers there are unlikely to be applicable here, and vice versa. These are not duplicates.
    $endgroup$
    – Frostfyre
    10 hours ago










  • $begingroup$
    @Frostfyre, They appear to be a complete overlap to me. How do they differ?
    $endgroup$
    – JBH
    8 hours ago






  • 5




    $begingroup$
    @JBH Well, as the question specifically mentions : unattended vs proactive protection.
    $endgroup$
    – Ville Niemi
    8 hours ago







1




1




$begingroup$
Possible duplicate of How long could we preserve technology post-apocalypse?
$endgroup$
– JBH
10 hours ago




$begingroup$
Possible duplicate of How long could we preserve technology post-apocalypse?
$endgroup$
– JBH
10 hours ago




1




1




$begingroup$
I read that question and nobody gave an answer that satisfies my answer. The answer that was selected didn't provide specific technologies to preserve electronics. Let's say this is a museum that wants to keep ancient tech working. I didn't see that in the question you cite. The question possible duplicate question talks about post apocalyptic world. Let's say this is a Utopian world with fully functioning infrastructure.
$endgroup$
– farmersteve
10 hours ago





$begingroup$
I read that question and nobody gave an answer that satisfies my answer. The answer that was selected didn't provide specific technologies to preserve electronics. Let's say this is a museum that wants to keep ancient tech working. I didn't see that in the question you cite. The question possible duplicate question talks about post apocalyptic world. Let's say this is a Utopian world with fully functioning infrastructure.
$endgroup$
– farmersteve
10 hours ago





1




1




$begingroup$
@JBH The answer space for these two questions is different; answers there are unlikely to be applicable here, and vice versa. These are not duplicates.
$endgroup$
– Frostfyre
10 hours ago




$begingroup$
@JBH The answer space for these two questions is different; answers there are unlikely to be applicable here, and vice versa. These are not duplicates.
$endgroup$
– Frostfyre
10 hours ago












$begingroup$
@Frostfyre, They appear to be a complete overlap to me. How do they differ?
$endgroup$
– JBH
8 hours ago




$begingroup$
@Frostfyre, They appear to be a complete overlap to me. How do they differ?
$endgroup$
– JBH
8 hours ago




5




5




$begingroup$
@JBH Well, as the question specifically mentions : unattended vs proactive protection.
$endgroup$
– Ville Niemi
8 hours ago




$begingroup$
@JBH Well, as the question specifically mentions : unattended vs proactive protection.
$endgroup$
– Ville Niemi
8 hours ago










7 Answers
7






active

oldest

votes


















8












$begingroup$

The 5 major things that can degrade electronics are electromagnetism, corrosion, excessive temperatures, vibration, and impact.



Electromagnetism is your number-one risk. It only takes a static shock with 1/2 the amperage it requires to make a visible spark to damage data; also, background EM radiation can degrade data slowly over time. Forensics investigators will often mitigate this risk by putting evidence into a static resistant evidence bag, which can then be placed in a faraday bag escentially blocking out all external EM influence.



The second risk is corrosion. For a device that you are not regularly handling, the only major outside corrosive agent you need to worry about is humidity. An air-tight evidence bag also works well for protecting against this; however, an off the shelf evidence bag may not be rated for 500 years. You would likely need to consult with a polymers expert to design such a bag. Vacuum sealing the bag might be worthwhile, but probably not necessary since the small amount of water vapor locked in the bag will expend itself over time doing negligible corrosion. Batteries (as other answers have pointed out) introduce corrosive elements from within; so, they will need to be drained, stored separately, and possibly rebuilt prior to use.



Excessive heat and cold become the hardest part to control over a 500 year gap. You can not exactly rely on an air conditioning system to be maintained for that long, but if you were to store your device in an underground bunker at a depth of at least 30 feet, mother nature will keep your temperature more or less constant for you.



Vibration mostly just affects things with moving disk drives in them; so, for purposes of preservation, I'm assuming you are talking about stored and not actively used hardware; so, this should be a minimal issue. That said, if you are occasionally powering your device on, it is best to do so on a heavy well secured desk or shelf. Lighter desks/shelves can be vibrated by a computer's fans reducing a computer drive's expected life-time by up to 75%.



Last is impact. If you are storing this device in a room full of engineers going about their daily businesses, eventually someone will knock it off the shelf and break it; so, storing it in a place with very limited human access is also pretty important. This makes keeping an electronic device from breaking within 500 years almost impossible for something that you need to use, but if you're talking about purely storage, you should be able to do this and the above 4 steps and have a pretty good success rate at storing electronics for that long.



In response to Edit #1:



If you are talking about a museum scenario, the mostly likely case would be to copy the data onto a replica, then put the replica on display. Museums rarely put items that fragile and rare on display.






share|improve this answer











$endgroup$












  • $begingroup$
    You cannot combat dopant and metal diffusion. Modern processors, flash memory and RAM are made up of very many very tiny electronic devices. Semiconductor and metal-oxide junction will degrade over five centuries, no matter what you do. Modern electronic devices are simply not made to last centuries.
    $endgroup$
    – AlexP
    8 hours ago










  • $begingroup$
    @AlexP If the device is at a very low temperature the diffusion of particles will take longer.
    $endgroup$
    – user400188
    5 hours ago










  • $begingroup$
    You apparently (I didn't read every word) fail to include the breakdown of electrolytic capacitors and storage batteries due to the chemical degradation they are constantly experiencing.
    $endgroup$
    – Hot Licks
    4 hours ago


















7












$begingroup$

TL;DR You cannot.



You need purpose-built items, with specially designed components and maybe even ad hoc designs (PSUs without electrolytic capacitors, etc.), capable of withstanding extreme cold.



Otherwise, there are several chemo-physical processes that would require to be halted.



  • Batteries: batteries will degrade over time, and be the first to go. You might want to store the specifications for the required voltage and just hook up a new battery whenever needed.

  • Static memories and hard disks: temperature, background radiation and charge loss are all enemies. You can cool down the apparatuses as far as possible, and shield them. Even so, they'll need to be reactivated and "refreshed" periodically. This is, on a longer timescale, what happens orders of magnitude times faster with DRAMs. Otherwise, the iPad won't boot up, because it no longer remembers how.

  • Welds. Most electronics being built today will die within fifty years at ambient temperature and pressure, due to the little-known fact that solder islands on circuit boards no longer contain lead or antimony, two poisonous metals that are nonetheless among the few cheap things that can prevent (rather, delay) the formation of metal whiskers. Nickel or gold-plated finishings aren't available on market electronics (some sailors might be familiar with the "brass fluff" growing out of cheap zinc-plated irons. On a much smaller scale, this is the same thing).

  • Condenser decay. This afflicts electrolytic capacitors, due to aluminum dioxide breakdown. Extreme cold will delay this process as well as it delays whiskering, but only up to a point - and some components cannot take extreme cold.

  • Insulator decay. Several rubbers and plastic insulating compounds are mixed with volatile plasticizers, where "volatile" means that they won't evaporate or significantly run off in fifty or sixty years... but the risk is there and I wouldn't bet on their seeing their hundredth birthday.

Most components aren't engineered to last at all, because the manufacturers know that the items will be replaced anyway inside, at most, of ten years. Just like ol' Henry Ford, who was said to send forensic teams in junkyards to tell him which parts of his cars had not failed so that he could start manufacturing them with cheaper tolerances. Only, this "controlled obsolescence" makes good business sense, and is actually done.






share|improve this answer









$endgroup$












  • $begingroup$
    This is what I figured. Consumer electronics are not meant to last any meaningful amount of time. BUT, if someone (company/government) wanted to make something that lasted a very long time, they could.
    $endgroup$
    – farmersteve
    6 hours ago






  • 2




    $begingroup$
    @farmersteve absolutely. Military-grade hardware already is way sturdier (and more expensive) than average. They, too, do not care for overlong stand-alone endurance (they make do with spare parts). But it can be done and in some instances is being done (e.g. NASA-spec electronics can be stored in extreme cold and hard vacuum, and are much more radiation resistant. Just look at some Martian rovers....).
    $endgroup$
    – LSerni
    6 hours ago










  • $begingroup$
    volatile plasticizers? Am I reading this correctly? I was under the impression volatile substances evaporate easily, even at room temperatures.
    $endgroup$
    – I.Am.A.Guy
    36 mins ago


















4












$begingroup$

If powered down, electronics can last as long as they don't take physical harm, with the exception of batteries and the bearings in moving parts like fans or platter hard drives.



Batteries, sad to say, can't be made to last that long -- or at least the kind that are useful for portable devices like tablets,. notebooks, and smart phones. There's a type of rechargeable battery that has been shown to last a century, and can likely last much longer than that -- the Edison iron battery -- but they have rather poor energy density. In English, that means a battery that can run a tablet for four or five hours continuously is closer in size to a car battery than the little lithium wafer cells our tablets have now.



Nothing would keep those devices from working on external power, however, so it might be worth storing dry-charged lead-acid batteries, which can last indefinitely before filling with acid.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    Capacitors and Resistors also degrade when not in use, and present day commercial capacitors likely won't last a century.
    $endgroup$
    – GOATNine
    10 hours ago






  • 1




    $begingroup$
    @GOATNine That's true of electrolytics, for certain, but as far as I know not for ceramic, tantalum, or similar solid-state capacitors. There are few if any electrolytics on the surface-mount circuit boards of a modern phone or tablet. I don't know of a mechanism whereby SMD resistors can deteriorate when not powered.
    $endgroup$
    – Zeiss Ikon
    9 hours ago






  • 1




    $begingroup$
    That is a good point in normal storage scenarios, but Capacitors and Resistors degrade due to corrosion and temperature. If you store them in a cool, dry, sealed system, they should only corrode to the point that the environment has contaminates to degrade them with extending their life indefinitely to the point of how well you sealed them.
    $endgroup$
    – Nosajimiki
    9 hours ago







  • 2




    $begingroup$
    @Nosajimiki Argon purge and constant-temp storage at cool room temp should do it. Might require an archival disassembly and cleaning to ensure there's no (for instance) solder flux left in the device to provide those contaminants.
    $endgroup$
    – Zeiss Ikon
    9 hours ago


















3












$begingroup$

Locate your museum on a rocket that is accelerated up to a significant fraction of the speed of light, so that time dilation means that the device you're preserving will only experience a small fraction of the 500 years you're preserving it over.






share|improve this answer









$endgroup$




















    2












    $begingroup$

    In all honesty, electronics are incredibly difficult to preserve, due to the very nature of their components.



    Particularly, batteries have a defined shelf life, even when unused. Capacitors and resistors (key components in most electronics) also have a limited lifespan, though they may degrade much more slowly if not in use. Storage media (such as flash memory or hard disks) have a limited life cycle related to the number of read/write operations performed. To have the electronics active, even just displaying a static screen, would likely severely limit the lifespan of any electronic device.



    The solution for museum displays would necessarily be restoration/periodic repair. There would have to exist a manufacturing process to produce replacement parts for the duration of the displays existence in the museum.






    share|improve this answer









    $endgroup$












    • $begingroup$
      Resistors aren't usually a life-limited part. Electrolytic capacitors, though, definitely are!
      $endgroup$
      – Shalvenay
      6 hours ago


















    2












    $begingroup$

    Breaking the device down on a part-by-part basis, and looking at what would be involved in preserving them:



    • Integrated circuits: as far as we know, an unpowered integrated circuit in a controlled environment will last indefinitely.

    • Resistors, solid-state capacitors, and other discrete components: these have the same indefinite lifespan as integrated circuits, and are generally more tolerant of temperature changes.

    • Batteries and electrolytic capacitors: These contain corrosive chemicals that tend to leak on a timescale of decades; lithium-ion batteries additionally tend to destroy themselves if fully discharged. If you're preserving an electronic device in a museum, you're going to need to remove these. When you want to power the device back up, you'll need to install replacements.

    • Circuit traces and wires: these tend to slowly corrode from atmospheric moisture. You'll want to store the device in a dry-nitrogen or argon atmosphere.

    • Plastic wire insulation: the plasticizer tends to evaporate on a timescale of decades. After a century or so, the insulation will be brittle and may be cracking from shrinkage. You'll want to re-insulate the wires or replace them before powering the device back up.

    • Plastic housings: these tend to discolor on a timescale of years to decades. The main cause of this is ultraviolet light, with atmospheric oxygen coming in second. A UV-protected container filled with the dry atmosphere you're using to protect the circuit traces will greatly slow the discoloration, but won't stop it entirely.

    • LCD screens: these are vulnerable to excessive heat or cold, and it's likely that UV light will degrade the dyes that give them the ability to display color. The same temperature and UV protection you're using to preserve other parts should be sufficient to protect them as well.

    • CRT screens: these depend on a vacuum inside the screen to function. Depending on the quality of manufacture, they may leak to the point of unusability over the course of 500 years or so. You may need to re-establish the vacuum before powering the device back up, which requires specialized equipment.

    • Flash/EEPROM memory: the data on these is susceptible to charge leakage on a timescale of decades to centuries. You can reduce the rate of data loss by cooling the device, but the need to avoid freezing the LCD means you can't cool far enough to get a 500-year lifespan. You're going to need to store the data on some more durable medium and re-write it before powering the device back up.

    • Hard drives: the lubrication on the bearings tends to stiffen up on a timescale of years. You'll need to clean and re-lubricate them before powering the device back up, and you'll need a cleanroom to do it in.

    There's no way to preserve an electronic device for 500 years in a way that permits immediate re-powering at any time. A museum would, however, be able to preserve one that only requires relatively minor maintenance before using, and the techniques involved are ones that museums commonly employ.






    share|improve this answer









    $endgroup$




















      1












      $begingroup$

      Preserving electronics for 500 years in working order dictates that they not be used at all in that 500 years.



      Copper, in particular, gets brittle as current passes through it and it heats up, and the copper traces in circuit boards even more so. The resistance of the copper joints also goes up.



      Electromigration is also a problem.



      Unfortunately, the only way you will know if they still work is to turn them on, but every time you turn them on, you increase the chances that next time they will not work.






      share|improve this answer









      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "579"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f141854%2fhow-to-preserve-electronics-computers-ipads-phones-for-hundreds-of-years%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        7 Answers
        7






        active

        oldest

        votes








        7 Answers
        7






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        8












        $begingroup$

        The 5 major things that can degrade electronics are electromagnetism, corrosion, excessive temperatures, vibration, and impact.



        Electromagnetism is your number-one risk. It only takes a static shock with 1/2 the amperage it requires to make a visible spark to damage data; also, background EM radiation can degrade data slowly over time. Forensics investigators will often mitigate this risk by putting evidence into a static resistant evidence bag, which can then be placed in a faraday bag escentially blocking out all external EM influence.



        The second risk is corrosion. For a device that you are not regularly handling, the only major outside corrosive agent you need to worry about is humidity. An air-tight evidence bag also works well for protecting against this; however, an off the shelf evidence bag may not be rated for 500 years. You would likely need to consult with a polymers expert to design such a bag. Vacuum sealing the bag might be worthwhile, but probably not necessary since the small amount of water vapor locked in the bag will expend itself over time doing negligible corrosion. Batteries (as other answers have pointed out) introduce corrosive elements from within; so, they will need to be drained, stored separately, and possibly rebuilt prior to use.



        Excessive heat and cold become the hardest part to control over a 500 year gap. You can not exactly rely on an air conditioning system to be maintained for that long, but if you were to store your device in an underground bunker at a depth of at least 30 feet, mother nature will keep your temperature more or less constant for you.



        Vibration mostly just affects things with moving disk drives in them; so, for purposes of preservation, I'm assuming you are talking about stored and not actively used hardware; so, this should be a minimal issue. That said, if you are occasionally powering your device on, it is best to do so on a heavy well secured desk or shelf. Lighter desks/shelves can be vibrated by a computer's fans reducing a computer drive's expected life-time by up to 75%.



        Last is impact. If you are storing this device in a room full of engineers going about their daily businesses, eventually someone will knock it off the shelf and break it; so, storing it in a place with very limited human access is also pretty important. This makes keeping an electronic device from breaking within 500 years almost impossible for something that you need to use, but if you're talking about purely storage, you should be able to do this and the above 4 steps and have a pretty good success rate at storing electronics for that long.



        In response to Edit #1:



        If you are talking about a museum scenario, the mostly likely case would be to copy the data onto a replica, then put the replica on display. Museums rarely put items that fragile and rare on display.






        share|improve this answer











        $endgroup$












        • $begingroup$
          You cannot combat dopant and metal diffusion. Modern processors, flash memory and RAM are made up of very many very tiny electronic devices. Semiconductor and metal-oxide junction will degrade over five centuries, no matter what you do. Modern electronic devices are simply not made to last centuries.
          $endgroup$
          – AlexP
          8 hours ago










        • $begingroup$
          @AlexP If the device is at a very low temperature the diffusion of particles will take longer.
          $endgroup$
          – user400188
          5 hours ago










        • $begingroup$
          You apparently (I didn't read every word) fail to include the breakdown of electrolytic capacitors and storage batteries due to the chemical degradation they are constantly experiencing.
          $endgroup$
          – Hot Licks
          4 hours ago















        8












        $begingroup$

        The 5 major things that can degrade electronics are electromagnetism, corrosion, excessive temperatures, vibration, and impact.



        Electromagnetism is your number-one risk. It only takes a static shock with 1/2 the amperage it requires to make a visible spark to damage data; also, background EM radiation can degrade data slowly over time. Forensics investigators will often mitigate this risk by putting evidence into a static resistant evidence bag, which can then be placed in a faraday bag escentially blocking out all external EM influence.



        The second risk is corrosion. For a device that you are not regularly handling, the only major outside corrosive agent you need to worry about is humidity. An air-tight evidence bag also works well for protecting against this; however, an off the shelf evidence bag may not be rated for 500 years. You would likely need to consult with a polymers expert to design such a bag. Vacuum sealing the bag might be worthwhile, but probably not necessary since the small amount of water vapor locked in the bag will expend itself over time doing negligible corrosion. Batteries (as other answers have pointed out) introduce corrosive elements from within; so, they will need to be drained, stored separately, and possibly rebuilt prior to use.



        Excessive heat and cold become the hardest part to control over a 500 year gap. You can not exactly rely on an air conditioning system to be maintained for that long, but if you were to store your device in an underground bunker at a depth of at least 30 feet, mother nature will keep your temperature more or less constant for you.



        Vibration mostly just affects things with moving disk drives in them; so, for purposes of preservation, I'm assuming you are talking about stored and not actively used hardware; so, this should be a minimal issue. That said, if you are occasionally powering your device on, it is best to do so on a heavy well secured desk or shelf. Lighter desks/shelves can be vibrated by a computer's fans reducing a computer drive's expected life-time by up to 75%.



        Last is impact. If you are storing this device in a room full of engineers going about their daily businesses, eventually someone will knock it off the shelf and break it; so, storing it in a place with very limited human access is also pretty important. This makes keeping an electronic device from breaking within 500 years almost impossible for something that you need to use, but if you're talking about purely storage, you should be able to do this and the above 4 steps and have a pretty good success rate at storing electronics for that long.



        In response to Edit #1:



        If you are talking about a museum scenario, the mostly likely case would be to copy the data onto a replica, then put the replica on display. Museums rarely put items that fragile and rare on display.






        share|improve this answer











        $endgroup$












        • $begingroup$
          You cannot combat dopant and metal diffusion. Modern processors, flash memory and RAM are made up of very many very tiny electronic devices. Semiconductor and metal-oxide junction will degrade over five centuries, no matter what you do. Modern electronic devices are simply not made to last centuries.
          $endgroup$
          – AlexP
          8 hours ago










        • $begingroup$
          @AlexP If the device is at a very low temperature the diffusion of particles will take longer.
          $endgroup$
          – user400188
          5 hours ago










        • $begingroup$
          You apparently (I didn't read every word) fail to include the breakdown of electrolytic capacitors and storage batteries due to the chemical degradation they are constantly experiencing.
          $endgroup$
          – Hot Licks
          4 hours ago













        8












        8








        8





        $begingroup$

        The 5 major things that can degrade electronics are electromagnetism, corrosion, excessive temperatures, vibration, and impact.



        Electromagnetism is your number-one risk. It only takes a static shock with 1/2 the amperage it requires to make a visible spark to damage data; also, background EM radiation can degrade data slowly over time. Forensics investigators will often mitigate this risk by putting evidence into a static resistant evidence bag, which can then be placed in a faraday bag escentially blocking out all external EM influence.



        The second risk is corrosion. For a device that you are not regularly handling, the only major outside corrosive agent you need to worry about is humidity. An air-tight evidence bag also works well for protecting against this; however, an off the shelf evidence bag may not be rated for 500 years. You would likely need to consult with a polymers expert to design such a bag. Vacuum sealing the bag might be worthwhile, but probably not necessary since the small amount of water vapor locked in the bag will expend itself over time doing negligible corrosion. Batteries (as other answers have pointed out) introduce corrosive elements from within; so, they will need to be drained, stored separately, and possibly rebuilt prior to use.



        Excessive heat and cold become the hardest part to control over a 500 year gap. You can not exactly rely on an air conditioning system to be maintained for that long, but if you were to store your device in an underground bunker at a depth of at least 30 feet, mother nature will keep your temperature more or less constant for you.



        Vibration mostly just affects things with moving disk drives in them; so, for purposes of preservation, I'm assuming you are talking about stored and not actively used hardware; so, this should be a minimal issue. That said, if you are occasionally powering your device on, it is best to do so on a heavy well secured desk or shelf. Lighter desks/shelves can be vibrated by a computer's fans reducing a computer drive's expected life-time by up to 75%.



        Last is impact. If you are storing this device in a room full of engineers going about their daily businesses, eventually someone will knock it off the shelf and break it; so, storing it in a place with very limited human access is also pretty important. This makes keeping an electronic device from breaking within 500 years almost impossible for something that you need to use, but if you're talking about purely storage, you should be able to do this and the above 4 steps and have a pretty good success rate at storing electronics for that long.



        In response to Edit #1:



        If you are talking about a museum scenario, the mostly likely case would be to copy the data onto a replica, then put the replica on display. Museums rarely put items that fragile and rare on display.






        share|improve this answer











        $endgroup$



        The 5 major things that can degrade electronics are electromagnetism, corrosion, excessive temperatures, vibration, and impact.



        Electromagnetism is your number-one risk. It only takes a static shock with 1/2 the amperage it requires to make a visible spark to damage data; also, background EM radiation can degrade data slowly over time. Forensics investigators will often mitigate this risk by putting evidence into a static resistant evidence bag, which can then be placed in a faraday bag escentially blocking out all external EM influence.



        The second risk is corrosion. For a device that you are not regularly handling, the only major outside corrosive agent you need to worry about is humidity. An air-tight evidence bag also works well for protecting against this; however, an off the shelf evidence bag may not be rated for 500 years. You would likely need to consult with a polymers expert to design such a bag. Vacuum sealing the bag might be worthwhile, but probably not necessary since the small amount of water vapor locked in the bag will expend itself over time doing negligible corrosion. Batteries (as other answers have pointed out) introduce corrosive elements from within; so, they will need to be drained, stored separately, and possibly rebuilt prior to use.



        Excessive heat and cold become the hardest part to control over a 500 year gap. You can not exactly rely on an air conditioning system to be maintained for that long, but if you were to store your device in an underground bunker at a depth of at least 30 feet, mother nature will keep your temperature more or less constant for you.



        Vibration mostly just affects things with moving disk drives in them; so, for purposes of preservation, I'm assuming you are talking about stored and not actively used hardware; so, this should be a minimal issue. That said, if you are occasionally powering your device on, it is best to do so on a heavy well secured desk or shelf. Lighter desks/shelves can be vibrated by a computer's fans reducing a computer drive's expected life-time by up to 75%.



        Last is impact. If you are storing this device in a room full of engineers going about their daily businesses, eventually someone will knock it off the shelf and break it; so, storing it in a place with very limited human access is also pretty important. This makes keeping an electronic device from breaking within 500 years almost impossible for something that you need to use, but if you're talking about purely storage, you should be able to do this and the above 4 steps and have a pretty good success rate at storing electronics for that long.



        In response to Edit #1:



        If you are talking about a museum scenario, the mostly likely case would be to copy the data onto a replica, then put the replica on display. Museums rarely put items that fragile and rare on display.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 10 hours ago

























        answered 10 hours ago









        NosajimikiNosajimiki

        2,212117




        2,212117











        • $begingroup$
          You cannot combat dopant and metal diffusion. Modern processors, flash memory and RAM are made up of very many very tiny electronic devices. Semiconductor and metal-oxide junction will degrade over five centuries, no matter what you do. Modern electronic devices are simply not made to last centuries.
          $endgroup$
          – AlexP
          8 hours ago










        • $begingroup$
          @AlexP If the device is at a very low temperature the diffusion of particles will take longer.
          $endgroup$
          – user400188
          5 hours ago










        • $begingroup$
          You apparently (I didn't read every word) fail to include the breakdown of electrolytic capacitors and storage batteries due to the chemical degradation they are constantly experiencing.
          $endgroup$
          – Hot Licks
          4 hours ago
















        • $begingroup$
          You cannot combat dopant and metal diffusion. Modern processors, flash memory and RAM are made up of very many very tiny electronic devices. Semiconductor and metal-oxide junction will degrade over five centuries, no matter what you do. Modern electronic devices are simply not made to last centuries.
          $endgroup$
          – AlexP
          8 hours ago










        • $begingroup$
          @AlexP If the device is at a very low temperature the diffusion of particles will take longer.
          $endgroup$
          – user400188
          5 hours ago










        • $begingroup$
          You apparently (I didn't read every word) fail to include the breakdown of electrolytic capacitors and storage batteries due to the chemical degradation they are constantly experiencing.
          $endgroup$
          – Hot Licks
          4 hours ago















        $begingroup$
        You cannot combat dopant and metal diffusion. Modern processors, flash memory and RAM are made up of very many very tiny electronic devices. Semiconductor and metal-oxide junction will degrade over five centuries, no matter what you do. Modern electronic devices are simply not made to last centuries.
        $endgroup$
        – AlexP
        8 hours ago




        $begingroup$
        You cannot combat dopant and metal diffusion. Modern processors, flash memory and RAM are made up of very many very tiny electronic devices. Semiconductor and metal-oxide junction will degrade over five centuries, no matter what you do. Modern electronic devices are simply not made to last centuries.
        $endgroup$
        – AlexP
        8 hours ago












        $begingroup$
        @AlexP If the device is at a very low temperature the diffusion of particles will take longer.
        $endgroup$
        – user400188
        5 hours ago




        $begingroup$
        @AlexP If the device is at a very low temperature the diffusion of particles will take longer.
        $endgroup$
        – user400188
        5 hours ago












        $begingroup$
        You apparently (I didn't read every word) fail to include the breakdown of electrolytic capacitors and storage batteries due to the chemical degradation they are constantly experiencing.
        $endgroup$
        – Hot Licks
        4 hours ago




        $begingroup$
        You apparently (I didn't read every word) fail to include the breakdown of electrolytic capacitors and storage batteries due to the chemical degradation they are constantly experiencing.
        $endgroup$
        – Hot Licks
        4 hours ago











        7












        $begingroup$

        TL;DR You cannot.



        You need purpose-built items, with specially designed components and maybe even ad hoc designs (PSUs without electrolytic capacitors, etc.), capable of withstanding extreme cold.



        Otherwise, there are several chemo-physical processes that would require to be halted.



        • Batteries: batteries will degrade over time, and be the first to go. You might want to store the specifications for the required voltage and just hook up a new battery whenever needed.

        • Static memories and hard disks: temperature, background radiation and charge loss are all enemies. You can cool down the apparatuses as far as possible, and shield them. Even so, they'll need to be reactivated and "refreshed" periodically. This is, on a longer timescale, what happens orders of magnitude times faster with DRAMs. Otherwise, the iPad won't boot up, because it no longer remembers how.

        • Welds. Most electronics being built today will die within fifty years at ambient temperature and pressure, due to the little-known fact that solder islands on circuit boards no longer contain lead or antimony, two poisonous metals that are nonetheless among the few cheap things that can prevent (rather, delay) the formation of metal whiskers. Nickel or gold-plated finishings aren't available on market electronics (some sailors might be familiar with the "brass fluff" growing out of cheap zinc-plated irons. On a much smaller scale, this is the same thing).

        • Condenser decay. This afflicts electrolytic capacitors, due to aluminum dioxide breakdown. Extreme cold will delay this process as well as it delays whiskering, but only up to a point - and some components cannot take extreme cold.

        • Insulator decay. Several rubbers and plastic insulating compounds are mixed with volatile plasticizers, where "volatile" means that they won't evaporate or significantly run off in fifty or sixty years... but the risk is there and I wouldn't bet on their seeing their hundredth birthday.

        Most components aren't engineered to last at all, because the manufacturers know that the items will be replaced anyway inside, at most, of ten years. Just like ol' Henry Ford, who was said to send forensic teams in junkyards to tell him which parts of his cars had not failed so that he could start manufacturing them with cheaper tolerances. Only, this "controlled obsolescence" makes good business sense, and is actually done.






        share|improve this answer









        $endgroup$












        • $begingroup$
          This is what I figured. Consumer electronics are not meant to last any meaningful amount of time. BUT, if someone (company/government) wanted to make something that lasted a very long time, they could.
          $endgroup$
          – farmersteve
          6 hours ago






        • 2




          $begingroup$
          @farmersteve absolutely. Military-grade hardware already is way sturdier (and more expensive) than average. They, too, do not care for overlong stand-alone endurance (they make do with spare parts). But it can be done and in some instances is being done (e.g. NASA-spec electronics can be stored in extreme cold and hard vacuum, and are much more radiation resistant. Just look at some Martian rovers....).
          $endgroup$
          – LSerni
          6 hours ago










        • $begingroup$
          volatile plasticizers? Am I reading this correctly? I was under the impression volatile substances evaporate easily, even at room temperatures.
          $endgroup$
          – I.Am.A.Guy
          36 mins ago















        7












        $begingroup$

        TL;DR You cannot.



        You need purpose-built items, with specially designed components and maybe even ad hoc designs (PSUs without electrolytic capacitors, etc.), capable of withstanding extreme cold.



        Otherwise, there are several chemo-physical processes that would require to be halted.



        • Batteries: batteries will degrade over time, and be the first to go. You might want to store the specifications for the required voltage and just hook up a new battery whenever needed.

        • Static memories and hard disks: temperature, background radiation and charge loss are all enemies. You can cool down the apparatuses as far as possible, and shield them. Even so, they'll need to be reactivated and "refreshed" periodically. This is, on a longer timescale, what happens orders of magnitude times faster with DRAMs. Otherwise, the iPad won't boot up, because it no longer remembers how.

        • Welds. Most electronics being built today will die within fifty years at ambient temperature and pressure, due to the little-known fact that solder islands on circuit boards no longer contain lead or antimony, two poisonous metals that are nonetheless among the few cheap things that can prevent (rather, delay) the formation of metal whiskers. Nickel or gold-plated finishings aren't available on market electronics (some sailors might be familiar with the "brass fluff" growing out of cheap zinc-plated irons. On a much smaller scale, this is the same thing).

        • Condenser decay. This afflicts electrolytic capacitors, due to aluminum dioxide breakdown. Extreme cold will delay this process as well as it delays whiskering, but only up to a point - and some components cannot take extreme cold.

        • Insulator decay. Several rubbers and plastic insulating compounds are mixed with volatile plasticizers, where "volatile" means that they won't evaporate or significantly run off in fifty or sixty years... but the risk is there and I wouldn't bet on their seeing their hundredth birthday.

        Most components aren't engineered to last at all, because the manufacturers know that the items will be replaced anyway inside, at most, of ten years. Just like ol' Henry Ford, who was said to send forensic teams in junkyards to tell him which parts of his cars had not failed so that he could start manufacturing them with cheaper tolerances. Only, this "controlled obsolescence" makes good business sense, and is actually done.






        share|improve this answer









        $endgroup$












        • $begingroup$
          This is what I figured. Consumer electronics are not meant to last any meaningful amount of time. BUT, if someone (company/government) wanted to make something that lasted a very long time, they could.
          $endgroup$
          – farmersteve
          6 hours ago






        • 2




          $begingroup$
          @farmersteve absolutely. Military-grade hardware already is way sturdier (and more expensive) than average. They, too, do not care for overlong stand-alone endurance (they make do with spare parts). But it can be done and in some instances is being done (e.g. NASA-spec electronics can be stored in extreme cold and hard vacuum, and are much more radiation resistant. Just look at some Martian rovers....).
          $endgroup$
          – LSerni
          6 hours ago










        • $begingroup$
          volatile plasticizers? Am I reading this correctly? I was under the impression volatile substances evaporate easily, even at room temperatures.
          $endgroup$
          – I.Am.A.Guy
          36 mins ago













        7












        7








        7





        $begingroup$

        TL;DR You cannot.



        You need purpose-built items, with specially designed components and maybe even ad hoc designs (PSUs without electrolytic capacitors, etc.), capable of withstanding extreme cold.



        Otherwise, there are several chemo-physical processes that would require to be halted.



        • Batteries: batteries will degrade over time, and be the first to go. You might want to store the specifications for the required voltage and just hook up a new battery whenever needed.

        • Static memories and hard disks: temperature, background radiation and charge loss are all enemies. You can cool down the apparatuses as far as possible, and shield them. Even so, they'll need to be reactivated and "refreshed" periodically. This is, on a longer timescale, what happens orders of magnitude times faster with DRAMs. Otherwise, the iPad won't boot up, because it no longer remembers how.

        • Welds. Most electronics being built today will die within fifty years at ambient temperature and pressure, due to the little-known fact that solder islands on circuit boards no longer contain lead or antimony, two poisonous metals that are nonetheless among the few cheap things that can prevent (rather, delay) the formation of metal whiskers. Nickel or gold-plated finishings aren't available on market electronics (some sailors might be familiar with the "brass fluff" growing out of cheap zinc-plated irons. On a much smaller scale, this is the same thing).

        • Condenser decay. This afflicts electrolytic capacitors, due to aluminum dioxide breakdown. Extreme cold will delay this process as well as it delays whiskering, but only up to a point - and some components cannot take extreme cold.

        • Insulator decay. Several rubbers and plastic insulating compounds are mixed with volatile plasticizers, where "volatile" means that they won't evaporate or significantly run off in fifty or sixty years... but the risk is there and I wouldn't bet on their seeing their hundredth birthday.

        Most components aren't engineered to last at all, because the manufacturers know that the items will be replaced anyway inside, at most, of ten years. Just like ol' Henry Ford, who was said to send forensic teams in junkyards to tell him which parts of his cars had not failed so that he could start manufacturing them with cheaper tolerances. Only, this "controlled obsolescence" makes good business sense, and is actually done.






        share|improve this answer









        $endgroup$



        TL;DR You cannot.



        You need purpose-built items, with specially designed components and maybe even ad hoc designs (PSUs without electrolytic capacitors, etc.), capable of withstanding extreme cold.



        Otherwise, there are several chemo-physical processes that would require to be halted.



        • Batteries: batteries will degrade over time, and be the first to go. You might want to store the specifications for the required voltage and just hook up a new battery whenever needed.

        • Static memories and hard disks: temperature, background radiation and charge loss are all enemies. You can cool down the apparatuses as far as possible, and shield them. Even so, they'll need to be reactivated and "refreshed" periodically. This is, on a longer timescale, what happens orders of magnitude times faster with DRAMs. Otherwise, the iPad won't boot up, because it no longer remembers how.

        • Welds. Most electronics being built today will die within fifty years at ambient temperature and pressure, due to the little-known fact that solder islands on circuit boards no longer contain lead or antimony, two poisonous metals that are nonetheless among the few cheap things that can prevent (rather, delay) the formation of metal whiskers. Nickel or gold-plated finishings aren't available on market electronics (some sailors might be familiar with the "brass fluff" growing out of cheap zinc-plated irons. On a much smaller scale, this is the same thing).

        • Condenser decay. This afflicts electrolytic capacitors, due to aluminum dioxide breakdown. Extreme cold will delay this process as well as it delays whiskering, but only up to a point - and some components cannot take extreme cold.

        • Insulator decay. Several rubbers and plastic insulating compounds are mixed with volatile plasticizers, where "volatile" means that they won't evaporate or significantly run off in fifty or sixty years... but the risk is there and I wouldn't bet on their seeing their hundredth birthday.

        Most components aren't engineered to last at all, because the manufacturers know that the items will be replaced anyway inside, at most, of ten years. Just like ol' Henry Ford, who was said to send forensic teams in junkyards to tell him which parts of his cars had not failed so that he could start manufacturing them with cheaper tolerances. Only, this "controlled obsolescence" makes good business sense, and is actually done.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 7 hours ago









        LSerniLSerni

        28.7k25192




        28.7k25192











        • $begingroup$
          This is what I figured. Consumer electronics are not meant to last any meaningful amount of time. BUT, if someone (company/government) wanted to make something that lasted a very long time, they could.
          $endgroup$
          – farmersteve
          6 hours ago






        • 2




          $begingroup$
          @farmersteve absolutely. Military-grade hardware already is way sturdier (and more expensive) than average. They, too, do not care for overlong stand-alone endurance (they make do with spare parts). But it can be done and in some instances is being done (e.g. NASA-spec electronics can be stored in extreme cold and hard vacuum, and are much more radiation resistant. Just look at some Martian rovers....).
          $endgroup$
          – LSerni
          6 hours ago










        • $begingroup$
          volatile plasticizers? Am I reading this correctly? I was under the impression volatile substances evaporate easily, even at room temperatures.
          $endgroup$
          – I.Am.A.Guy
          36 mins ago
















        • $begingroup$
          This is what I figured. Consumer electronics are not meant to last any meaningful amount of time. BUT, if someone (company/government) wanted to make something that lasted a very long time, they could.
          $endgroup$
          – farmersteve
          6 hours ago






        • 2




          $begingroup$
          @farmersteve absolutely. Military-grade hardware already is way sturdier (and more expensive) than average. They, too, do not care for overlong stand-alone endurance (they make do with spare parts). But it can be done and in some instances is being done (e.g. NASA-spec electronics can be stored in extreme cold and hard vacuum, and are much more radiation resistant. Just look at some Martian rovers....).
          $endgroup$
          – LSerni
          6 hours ago










        • $begingroup$
          volatile plasticizers? Am I reading this correctly? I was under the impression volatile substances evaporate easily, even at room temperatures.
          $endgroup$
          – I.Am.A.Guy
          36 mins ago















        $begingroup$
        This is what I figured. Consumer electronics are not meant to last any meaningful amount of time. BUT, if someone (company/government) wanted to make something that lasted a very long time, they could.
        $endgroup$
        – farmersteve
        6 hours ago




        $begingroup$
        This is what I figured. Consumer electronics are not meant to last any meaningful amount of time. BUT, if someone (company/government) wanted to make something that lasted a very long time, they could.
        $endgroup$
        – farmersteve
        6 hours ago




        2




        2




        $begingroup$
        @farmersteve absolutely. Military-grade hardware already is way sturdier (and more expensive) than average. They, too, do not care for overlong stand-alone endurance (they make do with spare parts). But it can be done and in some instances is being done (e.g. NASA-spec electronics can be stored in extreme cold and hard vacuum, and are much more radiation resistant. Just look at some Martian rovers....).
        $endgroup$
        – LSerni
        6 hours ago




        $begingroup$
        @farmersteve absolutely. Military-grade hardware already is way sturdier (and more expensive) than average. They, too, do not care for overlong stand-alone endurance (they make do with spare parts). But it can be done and in some instances is being done (e.g. NASA-spec electronics can be stored in extreme cold and hard vacuum, and are much more radiation resistant. Just look at some Martian rovers....).
        $endgroup$
        – LSerni
        6 hours ago












        $begingroup$
        volatile plasticizers? Am I reading this correctly? I was under the impression volatile substances evaporate easily, even at room temperatures.
        $endgroup$
        – I.Am.A.Guy
        36 mins ago




        $begingroup$
        volatile plasticizers? Am I reading this correctly? I was under the impression volatile substances evaporate easily, even at room temperatures.
        $endgroup$
        – I.Am.A.Guy
        36 mins ago











        4












        $begingroup$

        If powered down, electronics can last as long as they don't take physical harm, with the exception of batteries and the bearings in moving parts like fans or platter hard drives.



        Batteries, sad to say, can't be made to last that long -- or at least the kind that are useful for portable devices like tablets,. notebooks, and smart phones. There's a type of rechargeable battery that has been shown to last a century, and can likely last much longer than that -- the Edison iron battery -- but they have rather poor energy density. In English, that means a battery that can run a tablet for four or five hours continuously is closer in size to a car battery than the little lithium wafer cells our tablets have now.



        Nothing would keep those devices from working on external power, however, so it might be worth storing dry-charged lead-acid batteries, which can last indefinitely before filling with acid.






        share|improve this answer









        $endgroup$








        • 1




          $begingroup$
          Capacitors and Resistors also degrade when not in use, and present day commercial capacitors likely won't last a century.
          $endgroup$
          – GOATNine
          10 hours ago






        • 1




          $begingroup$
          @GOATNine That's true of electrolytics, for certain, but as far as I know not for ceramic, tantalum, or similar solid-state capacitors. There are few if any electrolytics on the surface-mount circuit boards of a modern phone or tablet. I don't know of a mechanism whereby SMD resistors can deteriorate when not powered.
          $endgroup$
          – Zeiss Ikon
          9 hours ago






        • 1




          $begingroup$
          That is a good point in normal storage scenarios, but Capacitors and Resistors degrade due to corrosion and temperature. If you store them in a cool, dry, sealed system, they should only corrode to the point that the environment has contaminates to degrade them with extending their life indefinitely to the point of how well you sealed them.
          $endgroup$
          – Nosajimiki
          9 hours ago







        • 2




          $begingroup$
          @Nosajimiki Argon purge and constant-temp storage at cool room temp should do it. Might require an archival disassembly and cleaning to ensure there's no (for instance) solder flux left in the device to provide those contaminants.
          $endgroup$
          – Zeiss Ikon
          9 hours ago















        4












        $begingroup$

        If powered down, electronics can last as long as they don't take physical harm, with the exception of batteries and the bearings in moving parts like fans or platter hard drives.



        Batteries, sad to say, can't be made to last that long -- or at least the kind that are useful for portable devices like tablets,. notebooks, and smart phones. There's a type of rechargeable battery that has been shown to last a century, and can likely last much longer than that -- the Edison iron battery -- but they have rather poor energy density. In English, that means a battery that can run a tablet for four or five hours continuously is closer in size to a car battery than the little lithium wafer cells our tablets have now.



        Nothing would keep those devices from working on external power, however, so it might be worth storing dry-charged lead-acid batteries, which can last indefinitely before filling with acid.






        share|improve this answer









        $endgroup$








        • 1




          $begingroup$
          Capacitors and Resistors also degrade when not in use, and present day commercial capacitors likely won't last a century.
          $endgroup$
          – GOATNine
          10 hours ago






        • 1




          $begingroup$
          @GOATNine That's true of electrolytics, for certain, but as far as I know not for ceramic, tantalum, or similar solid-state capacitors. There are few if any electrolytics on the surface-mount circuit boards of a modern phone or tablet. I don't know of a mechanism whereby SMD resistors can deteriorate when not powered.
          $endgroup$
          – Zeiss Ikon
          9 hours ago






        • 1




          $begingroup$
          That is a good point in normal storage scenarios, but Capacitors and Resistors degrade due to corrosion and temperature. If you store them in a cool, dry, sealed system, they should only corrode to the point that the environment has contaminates to degrade them with extending their life indefinitely to the point of how well you sealed them.
          $endgroup$
          – Nosajimiki
          9 hours ago







        • 2




          $begingroup$
          @Nosajimiki Argon purge and constant-temp storage at cool room temp should do it. Might require an archival disassembly and cleaning to ensure there's no (for instance) solder flux left in the device to provide those contaminants.
          $endgroup$
          – Zeiss Ikon
          9 hours ago













        4












        4








        4





        $begingroup$

        If powered down, electronics can last as long as they don't take physical harm, with the exception of batteries and the bearings in moving parts like fans or platter hard drives.



        Batteries, sad to say, can't be made to last that long -- or at least the kind that are useful for portable devices like tablets,. notebooks, and smart phones. There's a type of rechargeable battery that has been shown to last a century, and can likely last much longer than that -- the Edison iron battery -- but they have rather poor energy density. In English, that means a battery that can run a tablet for four or five hours continuously is closer in size to a car battery than the little lithium wafer cells our tablets have now.



        Nothing would keep those devices from working on external power, however, so it might be worth storing dry-charged lead-acid batteries, which can last indefinitely before filling with acid.






        share|improve this answer









        $endgroup$



        If powered down, electronics can last as long as they don't take physical harm, with the exception of batteries and the bearings in moving parts like fans or platter hard drives.



        Batteries, sad to say, can't be made to last that long -- or at least the kind that are useful for portable devices like tablets,. notebooks, and smart phones. There's a type of rechargeable battery that has been shown to last a century, and can likely last much longer than that -- the Edison iron battery -- but they have rather poor energy density. In English, that means a battery that can run a tablet for four or five hours continuously is closer in size to a car battery than the little lithium wafer cells our tablets have now.



        Nothing would keep those devices from working on external power, however, so it might be worth storing dry-charged lead-acid batteries, which can last indefinitely before filling with acid.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 10 hours ago









        Zeiss IkonZeiss Ikon

        1,888115




        1,888115







        • 1




          $begingroup$
          Capacitors and Resistors also degrade when not in use, and present day commercial capacitors likely won't last a century.
          $endgroup$
          – GOATNine
          10 hours ago






        • 1




          $begingroup$
          @GOATNine That's true of electrolytics, for certain, but as far as I know not for ceramic, tantalum, or similar solid-state capacitors. There are few if any electrolytics on the surface-mount circuit boards of a modern phone or tablet. I don't know of a mechanism whereby SMD resistors can deteriorate when not powered.
          $endgroup$
          – Zeiss Ikon
          9 hours ago






        • 1




          $begingroup$
          That is a good point in normal storage scenarios, but Capacitors and Resistors degrade due to corrosion and temperature. If you store them in a cool, dry, sealed system, they should only corrode to the point that the environment has contaminates to degrade them with extending their life indefinitely to the point of how well you sealed them.
          $endgroup$
          – Nosajimiki
          9 hours ago







        • 2




          $begingroup$
          @Nosajimiki Argon purge and constant-temp storage at cool room temp should do it. Might require an archival disassembly and cleaning to ensure there's no (for instance) solder flux left in the device to provide those contaminants.
          $endgroup$
          – Zeiss Ikon
          9 hours ago












        • 1




          $begingroup$
          Capacitors and Resistors also degrade when not in use, and present day commercial capacitors likely won't last a century.
          $endgroup$
          – GOATNine
          10 hours ago






        • 1




          $begingroup$
          @GOATNine That's true of electrolytics, for certain, but as far as I know not for ceramic, tantalum, or similar solid-state capacitors. There are few if any electrolytics on the surface-mount circuit boards of a modern phone or tablet. I don't know of a mechanism whereby SMD resistors can deteriorate when not powered.
          $endgroup$
          – Zeiss Ikon
          9 hours ago






        • 1




          $begingroup$
          That is a good point in normal storage scenarios, but Capacitors and Resistors degrade due to corrosion and temperature. If you store them in a cool, dry, sealed system, they should only corrode to the point that the environment has contaminates to degrade them with extending their life indefinitely to the point of how well you sealed them.
          $endgroup$
          – Nosajimiki
          9 hours ago







        • 2




          $begingroup$
          @Nosajimiki Argon purge and constant-temp storage at cool room temp should do it. Might require an archival disassembly and cleaning to ensure there's no (for instance) solder flux left in the device to provide those contaminants.
          $endgroup$
          – Zeiss Ikon
          9 hours ago







        1




        1




        $begingroup$
        Capacitors and Resistors also degrade when not in use, and present day commercial capacitors likely won't last a century.
        $endgroup$
        – GOATNine
        10 hours ago




        $begingroup$
        Capacitors and Resistors also degrade when not in use, and present day commercial capacitors likely won't last a century.
        $endgroup$
        – GOATNine
        10 hours ago




        1




        1




        $begingroup$
        @GOATNine That's true of electrolytics, for certain, but as far as I know not for ceramic, tantalum, or similar solid-state capacitors. There are few if any electrolytics on the surface-mount circuit boards of a modern phone or tablet. I don't know of a mechanism whereby SMD resistors can deteriorate when not powered.
        $endgroup$
        – Zeiss Ikon
        9 hours ago




        $begingroup$
        @GOATNine That's true of electrolytics, for certain, but as far as I know not for ceramic, tantalum, or similar solid-state capacitors. There are few if any electrolytics on the surface-mount circuit boards of a modern phone or tablet. I don't know of a mechanism whereby SMD resistors can deteriorate when not powered.
        $endgroup$
        – Zeiss Ikon
        9 hours ago




        1




        1




        $begingroup$
        That is a good point in normal storage scenarios, but Capacitors and Resistors degrade due to corrosion and temperature. If you store them in a cool, dry, sealed system, they should only corrode to the point that the environment has contaminates to degrade them with extending their life indefinitely to the point of how well you sealed them.
        $endgroup$
        – Nosajimiki
        9 hours ago





        $begingroup$
        That is a good point in normal storage scenarios, but Capacitors and Resistors degrade due to corrosion and temperature. If you store them in a cool, dry, sealed system, they should only corrode to the point that the environment has contaminates to degrade them with extending their life indefinitely to the point of how well you sealed them.
        $endgroup$
        – Nosajimiki
        9 hours ago





        2




        2




        $begingroup$
        @Nosajimiki Argon purge and constant-temp storage at cool room temp should do it. Might require an archival disassembly and cleaning to ensure there's no (for instance) solder flux left in the device to provide those contaminants.
        $endgroup$
        – Zeiss Ikon
        9 hours ago




        $begingroup$
        @Nosajimiki Argon purge and constant-temp storage at cool room temp should do it. Might require an archival disassembly and cleaning to ensure there's no (for instance) solder flux left in the device to provide those contaminants.
        $endgroup$
        – Zeiss Ikon
        9 hours ago











        3












        $begingroup$

        Locate your museum on a rocket that is accelerated up to a significant fraction of the speed of light, so that time dilation means that the device you're preserving will only experience a small fraction of the 500 years you're preserving it over.






        share|improve this answer









        $endgroup$

















          3












          $begingroup$

          Locate your museum on a rocket that is accelerated up to a significant fraction of the speed of light, so that time dilation means that the device you're preserving will only experience a small fraction of the 500 years you're preserving it over.






          share|improve this answer









          $endgroup$















            3












            3








            3





            $begingroup$

            Locate your museum on a rocket that is accelerated up to a significant fraction of the speed of light, so that time dilation means that the device you're preserving will only experience a small fraction of the 500 years you're preserving it over.






            share|improve this answer









            $endgroup$



            Locate your museum on a rocket that is accelerated up to a significant fraction of the speed of light, so that time dilation means that the device you're preserving will only experience a small fraction of the 500 years you're preserving it over.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 2 hours ago









            nick012000nick012000

            64517




            64517





















                2












                $begingroup$

                In all honesty, electronics are incredibly difficult to preserve, due to the very nature of their components.



                Particularly, batteries have a defined shelf life, even when unused. Capacitors and resistors (key components in most electronics) also have a limited lifespan, though they may degrade much more slowly if not in use. Storage media (such as flash memory or hard disks) have a limited life cycle related to the number of read/write operations performed. To have the electronics active, even just displaying a static screen, would likely severely limit the lifespan of any electronic device.



                The solution for museum displays would necessarily be restoration/periodic repair. There would have to exist a manufacturing process to produce replacement parts for the duration of the displays existence in the museum.






                share|improve this answer









                $endgroup$












                • $begingroup$
                  Resistors aren't usually a life-limited part. Electrolytic capacitors, though, definitely are!
                  $endgroup$
                  – Shalvenay
                  6 hours ago















                2












                $begingroup$

                In all honesty, electronics are incredibly difficult to preserve, due to the very nature of their components.



                Particularly, batteries have a defined shelf life, even when unused. Capacitors and resistors (key components in most electronics) also have a limited lifespan, though they may degrade much more slowly if not in use. Storage media (such as flash memory or hard disks) have a limited life cycle related to the number of read/write operations performed. To have the electronics active, even just displaying a static screen, would likely severely limit the lifespan of any electronic device.



                The solution for museum displays would necessarily be restoration/periodic repair. There would have to exist a manufacturing process to produce replacement parts for the duration of the displays existence in the museum.






                share|improve this answer









                $endgroup$












                • $begingroup$
                  Resistors aren't usually a life-limited part. Electrolytic capacitors, though, definitely are!
                  $endgroup$
                  – Shalvenay
                  6 hours ago













                2












                2








                2





                $begingroup$

                In all honesty, electronics are incredibly difficult to preserve, due to the very nature of their components.



                Particularly, batteries have a defined shelf life, even when unused. Capacitors and resistors (key components in most electronics) also have a limited lifespan, though they may degrade much more slowly if not in use. Storage media (such as flash memory or hard disks) have a limited life cycle related to the number of read/write operations performed. To have the electronics active, even just displaying a static screen, would likely severely limit the lifespan of any electronic device.



                The solution for museum displays would necessarily be restoration/periodic repair. There would have to exist a manufacturing process to produce replacement parts for the duration of the displays existence in the museum.






                share|improve this answer









                $endgroup$



                In all honesty, electronics are incredibly difficult to preserve, due to the very nature of their components.



                Particularly, batteries have a defined shelf life, even when unused. Capacitors and resistors (key components in most electronics) also have a limited lifespan, though they may degrade much more slowly if not in use. Storage media (such as flash memory or hard disks) have a limited life cycle related to the number of read/write operations performed. To have the electronics active, even just displaying a static screen, would likely severely limit the lifespan of any electronic device.



                The solution for museum displays would necessarily be restoration/periodic repair. There would have to exist a manufacturing process to produce replacement parts for the duration of the displays existence in the museum.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 10 hours ago









                GOATNineGOATNine

                832213




                832213











                • $begingroup$
                  Resistors aren't usually a life-limited part. Electrolytic capacitors, though, definitely are!
                  $endgroup$
                  – Shalvenay
                  6 hours ago
















                • $begingroup$
                  Resistors aren't usually a life-limited part. Electrolytic capacitors, though, definitely are!
                  $endgroup$
                  – Shalvenay
                  6 hours ago















                $begingroup$
                Resistors aren't usually a life-limited part. Electrolytic capacitors, though, definitely are!
                $endgroup$
                – Shalvenay
                6 hours ago




                $begingroup$
                Resistors aren't usually a life-limited part. Electrolytic capacitors, though, definitely are!
                $endgroup$
                – Shalvenay
                6 hours ago











                2












                $begingroup$

                Breaking the device down on a part-by-part basis, and looking at what would be involved in preserving them:



                • Integrated circuits: as far as we know, an unpowered integrated circuit in a controlled environment will last indefinitely.

                • Resistors, solid-state capacitors, and other discrete components: these have the same indefinite lifespan as integrated circuits, and are generally more tolerant of temperature changes.

                • Batteries and electrolytic capacitors: These contain corrosive chemicals that tend to leak on a timescale of decades; lithium-ion batteries additionally tend to destroy themselves if fully discharged. If you're preserving an electronic device in a museum, you're going to need to remove these. When you want to power the device back up, you'll need to install replacements.

                • Circuit traces and wires: these tend to slowly corrode from atmospheric moisture. You'll want to store the device in a dry-nitrogen or argon atmosphere.

                • Plastic wire insulation: the plasticizer tends to evaporate on a timescale of decades. After a century or so, the insulation will be brittle and may be cracking from shrinkage. You'll want to re-insulate the wires or replace them before powering the device back up.

                • Plastic housings: these tend to discolor on a timescale of years to decades. The main cause of this is ultraviolet light, with atmospheric oxygen coming in second. A UV-protected container filled with the dry atmosphere you're using to protect the circuit traces will greatly slow the discoloration, but won't stop it entirely.

                • LCD screens: these are vulnerable to excessive heat or cold, and it's likely that UV light will degrade the dyes that give them the ability to display color. The same temperature and UV protection you're using to preserve other parts should be sufficient to protect them as well.

                • CRT screens: these depend on a vacuum inside the screen to function. Depending on the quality of manufacture, they may leak to the point of unusability over the course of 500 years or so. You may need to re-establish the vacuum before powering the device back up, which requires specialized equipment.

                • Flash/EEPROM memory: the data on these is susceptible to charge leakage on a timescale of decades to centuries. You can reduce the rate of data loss by cooling the device, but the need to avoid freezing the LCD means you can't cool far enough to get a 500-year lifespan. You're going to need to store the data on some more durable medium and re-write it before powering the device back up.

                • Hard drives: the lubrication on the bearings tends to stiffen up on a timescale of years. You'll need to clean and re-lubricate them before powering the device back up, and you'll need a cleanroom to do it in.

                There's no way to preserve an electronic device for 500 years in a way that permits immediate re-powering at any time. A museum would, however, be able to preserve one that only requires relatively minor maintenance before using, and the techniques involved are ones that museums commonly employ.






                share|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Breaking the device down on a part-by-part basis, and looking at what would be involved in preserving them:



                  • Integrated circuits: as far as we know, an unpowered integrated circuit in a controlled environment will last indefinitely.

                  • Resistors, solid-state capacitors, and other discrete components: these have the same indefinite lifespan as integrated circuits, and are generally more tolerant of temperature changes.

                  • Batteries and electrolytic capacitors: These contain corrosive chemicals that tend to leak on a timescale of decades; lithium-ion batteries additionally tend to destroy themselves if fully discharged. If you're preserving an electronic device in a museum, you're going to need to remove these. When you want to power the device back up, you'll need to install replacements.

                  • Circuit traces and wires: these tend to slowly corrode from atmospheric moisture. You'll want to store the device in a dry-nitrogen or argon atmosphere.

                  • Plastic wire insulation: the plasticizer tends to evaporate on a timescale of decades. After a century or so, the insulation will be brittle and may be cracking from shrinkage. You'll want to re-insulate the wires or replace them before powering the device back up.

                  • Plastic housings: these tend to discolor on a timescale of years to decades. The main cause of this is ultraviolet light, with atmospheric oxygen coming in second. A UV-protected container filled with the dry atmosphere you're using to protect the circuit traces will greatly slow the discoloration, but won't stop it entirely.

                  • LCD screens: these are vulnerable to excessive heat or cold, and it's likely that UV light will degrade the dyes that give them the ability to display color. The same temperature and UV protection you're using to preserve other parts should be sufficient to protect them as well.

                  • CRT screens: these depend on a vacuum inside the screen to function. Depending on the quality of manufacture, they may leak to the point of unusability over the course of 500 years or so. You may need to re-establish the vacuum before powering the device back up, which requires specialized equipment.

                  • Flash/EEPROM memory: the data on these is susceptible to charge leakage on a timescale of decades to centuries. You can reduce the rate of data loss by cooling the device, but the need to avoid freezing the LCD means you can't cool far enough to get a 500-year lifespan. You're going to need to store the data on some more durable medium and re-write it before powering the device back up.

                  • Hard drives: the lubrication on the bearings tends to stiffen up on a timescale of years. You'll need to clean and re-lubricate them before powering the device back up, and you'll need a cleanroom to do it in.

                  There's no way to preserve an electronic device for 500 years in a way that permits immediate re-powering at any time. A museum would, however, be able to preserve one that only requires relatively minor maintenance before using, and the techniques involved are ones that museums commonly employ.






                  share|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Breaking the device down on a part-by-part basis, and looking at what would be involved in preserving them:



                    • Integrated circuits: as far as we know, an unpowered integrated circuit in a controlled environment will last indefinitely.

                    • Resistors, solid-state capacitors, and other discrete components: these have the same indefinite lifespan as integrated circuits, and are generally more tolerant of temperature changes.

                    • Batteries and electrolytic capacitors: These contain corrosive chemicals that tend to leak on a timescale of decades; lithium-ion batteries additionally tend to destroy themselves if fully discharged. If you're preserving an electronic device in a museum, you're going to need to remove these. When you want to power the device back up, you'll need to install replacements.

                    • Circuit traces and wires: these tend to slowly corrode from atmospheric moisture. You'll want to store the device in a dry-nitrogen or argon atmosphere.

                    • Plastic wire insulation: the plasticizer tends to evaporate on a timescale of decades. After a century or so, the insulation will be brittle and may be cracking from shrinkage. You'll want to re-insulate the wires or replace them before powering the device back up.

                    • Plastic housings: these tend to discolor on a timescale of years to decades. The main cause of this is ultraviolet light, with atmospheric oxygen coming in second. A UV-protected container filled with the dry atmosphere you're using to protect the circuit traces will greatly slow the discoloration, but won't stop it entirely.

                    • LCD screens: these are vulnerable to excessive heat or cold, and it's likely that UV light will degrade the dyes that give them the ability to display color. The same temperature and UV protection you're using to preserve other parts should be sufficient to protect them as well.

                    • CRT screens: these depend on a vacuum inside the screen to function. Depending on the quality of manufacture, they may leak to the point of unusability over the course of 500 years or so. You may need to re-establish the vacuum before powering the device back up, which requires specialized equipment.

                    • Flash/EEPROM memory: the data on these is susceptible to charge leakage on a timescale of decades to centuries. You can reduce the rate of data loss by cooling the device, but the need to avoid freezing the LCD means you can't cool far enough to get a 500-year lifespan. You're going to need to store the data on some more durable medium and re-write it before powering the device back up.

                    • Hard drives: the lubrication on the bearings tends to stiffen up on a timescale of years. You'll need to clean and re-lubricate them before powering the device back up, and you'll need a cleanroom to do it in.

                    There's no way to preserve an electronic device for 500 years in a way that permits immediate re-powering at any time. A museum would, however, be able to preserve one that only requires relatively minor maintenance before using, and the techniques involved are ones that museums commonly employ.






                    share|improve this answer









                    $endgroup$



                    Breaking the device down on a part-by-part basis, and looking at what would be involved in preserving them:



                    • Integrated circuits: as far as we know, an unpowered integrated circuit in a controlled environment will last indefinitely.

                    • Resistors, solid-state capacitors, and other discrete components: these have the same indefinite lifespan as integrated circuits, and are generally more tolerant of temperature changes.

                    • Batteries and electrolytic capacitors: These contain corrosive chemicals that tend to leak on a timescale of decades; lithium-ion batteries additionally tend to destroy themselves if fully discharged. If you're preserving an electronic device in a museum, you're going to need to remove these. When you want to power the device back up, you'll need to install replacements.

                    • Circuit traces and wires: these tend to slowly corrode from atmospheric moisture. You'll want to store the device in a dry-nitrogen or argon atmosphere.

                    • Plastic wire insulation: the plasticizer tends to evaporate on a timescale of decades. After a century or so, the insulation will be brittle and may be cracking from shrinkage. You'll want to re-insulate the wires or replace them before powering the device back up.

                    • Plastic housings: these tend to discolor on a timescale of years to decades. The main cause of this is ultraviolet light, with atmospheric oxygen coming in second. A UV-protected container filled with the dry atmosphere you're using to protect the circuit traces will greatly slow the discoloration, but won't stop it entirely.

                    • LCD screens: these are vulnerable to excessive heat or cold, and it's likely that UV light will degrade the dyes that give them the ability to display color. The same temperature and UV protection you're using to preserve other parts should be sufficient to protect them as well.

                    • CRT screens: these depend on a vacuum inside the screen to function. Depending on the quality of manufacture, they may leak to the point of unusability over the course of 500 years or so. You may need to re-establish the vacuum before powering the device back up, which requires specialized equipment.

                    • Flash/EEPROM memory: the data on these is susceptible to charge leakage on a timescale of decades to centuries. You can reduce the rate of data loss by cooling the device, but the need to avoid freezing the LCD means you can't cool far enough to get a 500-year lifespan. You're going to need to store the data on some more durable medium and re-write it before powering the device back up.

                    • Hard drives: the lubrication on the bearings tends to stiffen up on a timescale of years. You'll need to clean and re-lubricate them before powering the device back up, and you'll need a cleanroom to do it in.

                    There's no way to preserve an electronic device for 500 years in a way that permits immediate re-powering at any time. A museum would, however, be able to preserve one that only requires relatively minor maintenance before using, and the techniques involved are ones that museums commonly employ.







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 4 hours ago









                    MarkMark

                    13.3k3164




                    13.3k3164





















                        1












                        $begingroup$

                        Preserving electronics for 500 years in working order dictates that they not be used at all in that 500 years.



                        Copper, in particular, gets brittle as current passes through it and it heats up, and the copper traces in circuit boards even more so. The resistance of the copper joints also goes up.



                        Electromigration is also a problem.



                        Unfortunately, the only way you will know if they still work is to turn them on, but every time you turn them on, you increase the chances that next time they will not work.






                        share|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Preserving electronics for 500 years in working order dictates that they not be used at all in that 500 years.



                          Copper, in particular, gets brittle as current passes through it and it heats up, and the copper traces in circuit boards even more so. The resistance of the copper joints also goes up.



                          Electromigration is also a problem.



                          Unfortunately, the only way you will know if they still work is to turn them on, but every time you turn them on, you increase the chances that next time they will not work.






                          share|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Preserving electronics for 500 years in working order dictates that they not be used at all in that 500 years.



                            Copper, in particular, gets brittle as current passes through it and it heats up, and the copper traces in circuit boards even more so. The resistance of the copper joints also goes up.



                            Electromigration is also a problem.



                            Unfortunately, the only way you will know if they still work is to turn them on, but every time you turn them on, you increase the chances that next time they will not work.






                            share|improve this answer









                            $endgroup$



                            Preserving electronics for 500 years in working order dictates that they not be used at all in that 500 years.



                            Copper, in particular, gets brittle as current passes through it and it heats up, and the copper traces in circuit boards even more so. The resistance of the copper joints also goes up.



                            Electromigration is also a problem.



                            Unfortunately, the only way you will know if they still work is to turn them on, but every time you turn them on, you increase the chances that next time they will not work.







                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 9 hours ago









                            Justin Thyme the SecondJustin Thyme the Second

                            7857




                            7857



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Worldbuilding Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f141854%2fhow-to-preserve-electronics-computers-ipads-phones-for-hundreds-of-years%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                                Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                                Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe