How to compute a Jacobian using polar coordinates? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraHow do I convert a vector field in Cartesian coordinates to spherical coordinates?gradient in polar coordinate by changing gradient in Cartesian coordinateJacobian of the change of variablesJacobian Determinant of Polar-Coordinate TransformationPolar coordinates and Jacobian of $frac12 r $Elementary JacobianPartial derivative in polar coordinatesHow do I prove this identity involving polar coordinates and $nabla$?What is the Jacobian in this transformationDoubt about differentia operatorl in polar coordinates

How to begin with a paragraph in latex

Getting AggregateResult variables from Execute Anonymous Window

When I export an AI 300x60 art board it saves with bigger dimensions

What is the definining line between a helicopter and a drone a person can ride in?

Is it appropriate to mention a relatable company blog post when you're asked about the company?

Raising a bilingual kid. When should we introduce the majority language?

Retract an already submitted Recommendation Letter (written for an undergrad student)

Suing a Police Officer Instead of the Police Department

Why aren't road bicycle wheels tiny?

Bright yellow or light yellow?

Why do people think Winterfell crypts is the safest place for women, children & old people?

How long can a nation maintain a technological edge over the rest of the world?

Co-worker works way more than he should

Was Objective-C really a hindrance to Apple software development?

A journey... into the MIND

What is the evidence that custom checks in Northern Ireland are going to result in violence?

Will I lose my paid in full property

Is there a possibility to generate a list dynamically in Latex?

Processing ADC conversion result: DMA vs Processor Registers

Is it OK if I do not take the receipt in Germany?

My admission is revoked after accepting the admission offer

What is the ongoing value of the Kanban board to the developers as opposed to management

What to do with someone that cheated their way though university and a PhD program?

Why does Java have support for time zone offsets with seconds precision?



How to compute a Jacobian using polar coordinates?



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraHow do I convert a vector field in Cartesian coordinates to spherical coordinates?gradient in polar coordinate by changing gradient in Cartesian coordinateJacobian of the change of variablesJacobian Determinant of Polar-Coordinate TransformationPolar coordinates and Jacobian of $frac12 r $Elementary JacobianPartial derivative in polar coordinatesHow do I prove this identity involving polar coordinates and $nabla$?What is the Jacobian in this transformationDoubt about differentia operatorl in polar coordinates










5












$begingroup$


Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
$$
F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

Its Jacobian matrix is
$$tag1
beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

The following alternative computation is wrong at (!) and (!!), and I cannot see why.




Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
$$
beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




Can you help me spot the mistake?











share|cite|improve this question











$endgroup$
















    5












    $begingroup$


    Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
    $$
    F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

    Its Jacobian matrix is
    $$tag1
    beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

    The following alternative computation is wrong at (!) and (!!), and I cannot see why.




    Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




    The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
    $$
    beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

    which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




    Can you help me spot the mistake?











    share|cite|improve this question











    $endgroup$














      5












      5








      5


      2



      $begingroup$


      Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
      $$
      F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

      Its Jacobian matrix is
      $$tag1
      beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

      The following alternative computation is wrong at (!) and (!!), and I cannot see why.




      Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




      The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
      $$
      beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

      which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




      Can you help me spot the mistake?











      share|cite|improve this question











      $endgroup$




      Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
      $$
      F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

      Its Jacobian matrix is
      $$tag1
      beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

      The following alternative computation is wrong at (!) and (!!), and I cannot see why.




      Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




      The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
      $$
      beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

      which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




      Can you help me spot the mistake?








      calculus multivariable-calculus differential-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 6 hours ago









      Tengu

      2,68411021




      2,68411021










      asked 7 hours ago









      Giuseppe NegroGiuseppe Negro

      17.7k332128




      17.7k332128




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          The Jacobians of the two functions aren't equal by the chain rule.



          In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            I don't think there is any contradiction here.



            Consider the volume form
            $$ omega_rm Cart = dx wedge dy.$$
            Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
            $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



            Now consider the volume form
            $$ omega_rm Polar = dr wedge dtheta.$$
            Your second calculation shows that



            $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



            We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
            $$ omega_rm Cart = r omega_rm Polar,$$
            we have:
            beginalign
            F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
            endalign

            which is consistent with the first calculation!




            As for the application of the chain rule, we have:
            $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



            The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



            This is equal to



            $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
            which is not the inverse of $(Dphi)|_(r, theta)$.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
              $endgroup$
              – Giuseppe Negro
              5 hours ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3198750%2fhow-to-compute-a-jacobian-using-polar-coordinates%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            The Jacobians of the two functions aren't equal by the chain rule.



            In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              The Jacobians of the two functions aren't equal by the chain rule.



              In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                The Jacobians of the two functions aren't equal by the chain rule.



                In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






                share|cite|improve this answer









                $endgroup$



                The Jacobians of the two functions aren't equal by the chain rule.



                In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 6 hours ago









                George DewhirstGeorge Dewhirst

                1,72515




                1,72515





















                    2












                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      5 hours ago















                    2












                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      5 hours ago













                    2












                    2








                    2





                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite|improve this answer











                    $endgroup$



                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 6 hours ago

























                    answered 6 hours ago









                    Kenny WongKenny Wong

                    20.1k21442




                    20.1k21442











                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      5 hours ago
















                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      5 hours ago















                    $begingroup$
                    I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                    $endgroup$
                    – Giuseppe Negro
                    5 hours ago




                    $begingroup$
                    I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                    $endgroup$
                    – Giuseppe Negro
                    5 hours ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3198750%2fhow-to-compute-a-jacobian-using-polar-coordinates%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe