ContourPlot — How do I color by contour curvature?Custom contour labels in ContourPlotListContourPlot is blocking my geometryHow to plot the contour of f[x,y]==0 if always f[x,y]>=0Contour coloring and (List)ContourPlot projectionMore stream lines in a ListStreamPlotContourPlot - unequal contour spacingContourPlot color problems3D Stack of Disks with dedicated height plotsHow to color Contours in ContourPlot with custom ColorFunctionChanging the color of a specific curve in ContourPlot

How to get directions in deep space?

How do I tell my boss that I'm quitting in 15 days (a colleague left this week)

Possible Eco thriller, man invents a device to remove rain from glass

El Dorado Word Puzzle II: Videogame Edition

What does "tick" mean in this sentence?

Can you identify this lizard-like creature I observed in the UK?

Do you waste sorcery points if you try to apply metamagic to a spell from a scroll but fail to cast it?

Is there a distance limit for minecart tracks?

Echo with obfuscation

Giving feedback to someone without sounding prejudiced

Language involving irrational number is not a CFL

Sound waves in different octaves

Isometric embedding of a genus g surface

Can I cause damage to electrical appliances by unplugging them when they are turned on?

Air travel with refrigerated insulin

Is there a RAID 0 Equivalent for RAM?

How do I prevent inappropriate ads from appearing in my game?

How to make a list of partial sums using forEach

Mimic lecturing on blackboard, facing audience

What happens if I try to grapple an illusory duplicate from the Mirror Image spell?

What is this high flying aircraft over Pennsylvania?

How do I fix the group tension caused by my character stealing and possibly killing without provocation?

How do I Interface a PS/2 Keyboard without Modern Techniques?

What the heck is gets(stdin) on site coderbyte?



ContourPlot — How do I color by contour curvature?


Custom contour labels in ContourPlotListContourPlot is blocking my geometryHow to plot the contour of f[x,y]==0 if always f[x,y]>=0Contour coloring and (List)ContourPlot projectionMore stream lines in a ListStreamPlotContourPlot - unequal contour spacingContourPlot color problems3D Stack of Disks with dedicated height plotsHow to color Contours in ContourPlot with custom ColorFunctionChanging the color of a specific curve in ContourPlot













5












$begingroup$


I'm plotting the stream lines of fluid flow past a cylinder, and I would like the colors to increase with contour curvature (i.e. increase as the velocity of the flow increases. Here's a MWE that seems to color it based on the the y-axis value:



ψ[r_, θ_] := U (r - a^2/r) Sin[θ]
r = Sqrt[x^2 + y^2];
θ = ArcSin[y/r];

stream = ContourPlot[
ψ[r, θ] /. U -> 10, a -> 1,
x, -5,5, y, -5, 5,
Contours -> 10 Table[i, i, -10, 10, 0.025]
];

cyl = Graphics[Disk[0, 0, 1]];

Show[stream, cyl]


stream lines around a cylinder










share|improve this question











$endgroup$
















    5












    $begingroup$


    I'm plotting the stream lines of fluid flow past a cylinder, and I would like the colors to increase with contour curvature (i.e. increase as the velocity of the flow increases. Here's a MWE that seems to color it based on the the y-axis value:



    ψ[r_, θ_] := U (r - a^2/r) Sin[θ]
    r = Sqrt[x^2 + y^2];
    θ = ArcSin[y/r];

    stream = ContourPlot[
    ψ[r, θ] /. U -> 10, a -> 1,
    x, -5,5, y, -5, 5,
    Contours -> 10 Table[i, i, -10, 10, 0.025]
    ];

    cyl = Graphics[Disk[0, 0, 1]];

    Show[stream, cyl]


    stream lines around a cylinder










    share|improve this question











    $endgroup$














      5












      5








      5


      2



      $begingroup$


      I'm plotting the stream lines of fluid flow past a cylinder, and I would like the colors to increase with contour curvature (i.e. increase as the velocity of the flow increases. Here's a MWE that seems to color it based on the the y-axis value:



      ψ[r_, θ_] := U (r - a^2/r) Sin[θ]
      r = Sqrt[x^2 + y^2];
      θ = ArcSin[y/r];

      stream = ContourPlot[
      ψ[r, θ] /. U -> 10, a -> 1,
      x, -5,5, y, -5, 5,
      Contours -> 10 Table[i, i, -10, 10, 0.025]
      ];

      cyl = Graphics[Disk[0, 0, 1]];

      Show[stream, cyl]


      stream lines around a cylinder










      share|improve this question











      $endgroup$




      I'm plotting the stream lines of fluid flow past a cylinder, and I would like the colors to increase with contour curvature (i.e. increase as the velocity of the flow increases. Here's a MWE that seems to color it based on the the y-axis value:



      ψ[r_, θ_] := U (r - a^2/r) Sin[θ]
      r = Sqrt[x^2 + y^2];
      θ = ArcSin[y/r];

      stream = ContourPlot[
      ψ[r, θ] /. U -> 10, a -> 1,
      x, -5,5, y, -5, 5,
      Contours -> 10 Table[i, i, -10, 10, 0.025]
      ];

      cyl = Graphics[Disk[0, 0, 1]];

      Show[stream, cyl]


      stream lines around a cylinder







      plotting color






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 5 hours ago









      m_goldberg

      87.7k872198




      87.7k872198










      asked 7 hours ago









      dpholmesdpholmes

      301110




      301110




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          f = ψ[r, θ] /. U -> 10, a -> 1;
          gradf = D[f, x, y, 1];
          Hessf = D[f, x, y, 2];
          normal = gradf[[1]]/Sqrt[gradf[[1]].gradf[[1]]];
          secondfundamentalform = -PseudoInverse[gradf].Hessf // ComplexExpand // Simplify;
          tangent = RotationMatrix[Pi/2].normal // Simplify;
          curvaturevector = Simplify[(secondfundamentalform.tangent).tangent];
          signedcurvature = curvaturevector.normal;

          stream = ContourPlot[
          ψ[r, θ] /. U -> 10, a -> 1, x, -5, 5, y, -5, 5,
          Contours -> 10 Table[i, i, -10, 10, 0.2],
          ContourShading -> None
          ];
          curvatureplot = DensityPlot[signedcurvature, x, -5, 5, y, -5, 5,
          ColorFunction -> "DarkRainbow",
          PlotPoints -> 50,
          PlotRange -> -1, 1 2
          ];
          Show[
          curvatureplot,
          stream,
          cyl
          ]


          enter image description here



          The white regions are peaks in the curvature distribution. You may increase PlotRange to make the white regions smaller, however, at the price of less contrast.






          share|improve this answer











          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193665%2fcontourplot-how-do-i-color-by-contour-curvature%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            f = ψ[r, θ] /. U -> 10, a -> 1;
            gradf = D[f, x, y, 1];
            Hessf = D[f, x, y, 2];
            normal = gradf[[1]]/Sqrt[gradf[[1]].gradf[[1]]];
            secondfundamentalform = -PseudoInverse[gradf].Hessf // ComplexExpand // Simplify;
            tangent = RotationMatrix[Pi/2].normal // Simplify;
            curvaturevector = Simplify[(secondfundamentalform.tangent).tangent];
            signedcurvature = curvaturevector.normal;

            stream = ContourPlot[
            ψ[r, θ] /. U -> 10, a -> 1, x, -5, 5, y, -5, 5,
            Contours -> 10 Table[i, i, -10, 10, 0.2],
            ContourShading -> None
            ];
            curvatureplot = DensityPlot[signedcurvature, x, -5, 5, y, -5, 5,
            ColorFunction -> "DarkRainbow",
            PlotPoints -> 50,
            PlotRange -> -1, 1 2
            ];
            Show[
            curvatureplot,
            stream,
            cyl
            ]


            enter image description here



            The white regions are peaks in the curvature distribution. You may increase PlotRange to make the white regions smaller, however, at the price of less contrast.






            share|improve this answer











            $endgroup$

















              6












              $begingroup$

              f = ψ[r, θ] /. U -> 10, a -> 1;
              gradf = D[f, x, y, 1];
              Hessf = D[f, x, y, 2];
              normal = gradf[[1]]/Sqrt[gradf[[1]].gradf[[1]]];
              secondfundamentalform = -PseudoInverse[gradf].Hessf // ComplexExpand // Simplify;
              tangent = RotationMatrix[Pi/2].normal // Simplify;
              curvaturevector = Simplify[(secondfundamentalform.tangent).tangent];
              signedcurvature = curvaturevector.normal;

              stream = ContourPlot[
              ψ[r, θ] /. U -> 10, a -> 1, x, -5, 5, y, -5, 5,
              Contours -> 10 Table[i, i, -10, 10, 0.2],
              ContourShading -> None
              ];
              curvatureplot = DensityPlot[signedcurvature, x, -5, 5, y, -5, 5,
              ColorFunction -> "DarkRainbow",
              PlotPoints -> 50,
              PlotRange -> -1, 1 2
              ];
              Show[
              curvatureplot,
              stream,
              cyl
              ]


              enter image description here



              The white regions are peaks in the curvature distribution. You may increase PlotRange to make the white regions smaller, however, at the price of less contrast.






              share|improve this answer











              $endgroup$















                6












                6








                6





                $begingroup$

                f = ψ[r, θ] /. U -> 10, a -> 1;
                gradf = D[f, x, y, 1];
                Hessf = D[f, x, y, 2];
                normal = gradf[[1]]/Sqrt[gradf[[1]].gradf[[1]]];
                secondfundamentalform = -PseudoInverse[gradf].Hessf // ComplexExpand // Simplify;
                tangent = RotationMatrix[Pi/2].normal // Simplify;
                curvaturevector = Simplify[(secondfundamentalform.tangent).tangent];
                signedcurvature = curvaturevector.normal;

                stream = ContourPlot[
                ψ[r, θ] /. U -> 10, a -> 1, x, -5, 5, y, -5, 5,
                Contours -> 10 Table[i, i, -10, 10, 0.2],
                ContourShading -> None
                ];
                curvatureplot = DensityPlot[signedcurvature, x, -5, 5, y, -5, 5,
                ColorFunction -> "DarkRainbow",
                PlotPoints -> 50,
                PlotRange -> -1, 1 2
                ];
                Show[
                curvatureplot,
                stream,
                cyl
                ]


                enter image description here



                The white regions are peaks in the curvature distribution. You may increase PlotRange to make the white regions smaller, however, at the price of less contrast.






                share|improve this answer











                $endgroup$



                f = ψ[r, θ] /. U -> 10, a -> 1;
                gradf = D[f, x, y, 1];
                Hessf = D[f, x, y, 2];
                normal = gradf[[1]]/Sqrt[gradf[[1]].gradf[[1]]];
                secondfundamentalform = -PseudoInverse[gradf].Hessf // ComplexExpand // Simplify;
                tangent = RotationMatrix[Pi/2].normal // Simplify;
                curvaturevector = Simplify[(secondfundamentalform.tangent).tangent];
                signedcurvature = curvaturevector.normal;

                stream = ContourPlot[
                ψ[r, θ] /. U -> 10, a -> 1, x, -5, 5, y, -5, 5,
                Contours -> 10 Table[i, i, -10, 10, 0.2],
                ContourShading -> None
                ];
                curvatureplot = DensityPlot[signedcurvature, x, -5, 5, y, -5, 5,
                ColorFunction -> "DarkRainbow",
                PlotPoints -> 50,
                PlotRange -> -1, 1 2
                ];
                Show[
                curvatureplot,
                stream,
                cyl
                ]


                enter image description here



                The white regions are peaks in the curvature distribution. You may increase PlotRange to make the white regions smaller, however, at the price of less contrast.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 6 hours ago

























                answered 6 hours ago









                Henrik SchumacherHenrik Schumacher

                57.2k577157




                57.2k577157



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193665%2fcontourplot-how-do-i-color-by-contour-curvature%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр