Language involving irrational number is not a CFLHow to prove that a language is not regular?Why is $L= 0^n 1^n $ not regular language?Prove that the language of unary not-prime numbers satisfies the Pumping LemmaAlgorithm to test whether a language is context-freeUsing the Pumping Lemma to show that the language $a^n b a^n$ is not regularA non-regular language satisfying the pumping lemmaProving non-regularity of $u u^R v$?Prove using pumping free lemma for context-free languagesProve that $L_1 = , 0^m 1^k 2^n ,vert, lvert m - n rvert = k ,$ is not regular using Pumping lemmaPumping lemma for context-free languages - Am I doing it right?

How do I prevent inappropriate ads from appearing in my game?

How do I tell my boss that I'm quitting in 15 days (a colleague left this week)

Confusion over Hunter with Crossbow Expert and Giant Killer

How much do grades matter for a future academia position?

Determining multivariate least squares with constraint

Proving an identity involving cross products and coplanar vectors

Overlapping circles covering polygon

In One Punch Man, is King actually weak?

If the only attacker is removed from combat, is a creature still counted as having attacked this turn?

Why is the principal energy of an electron lower for excited electrons in a higher energy state?

How can I, as DM, avoid the Conga Line of Death occurring when implementing some form of flanking rule?

Does Doodling or Improvising on the Piano Have Any Benefits?

Unable to disable Microsoft Store in domain environment

Difference between shutdown options

Telemetry for feature health

Ways of geometrical multiplication

Storage of electrolytic capacitors - how long?

Echo with obfuscation

Review your own paper in Mathematics

What happens if I try to grapple mirror image?

Mimic lecturing on blackboard, facing audience

The Digit Triangles

Do I have to know the General Relativity theory to understand the concept of inertial frame?

How can ruler support inventing of useful things?



Language involving irrational number is not a CFL


How to prove that a language is not regular?Why is $L= n geq 1 $ not regular language?Prove that the language of unary not-prime numbers satisfies the Pumping LemmaAlgorithm to test whether a language is context-freeUsing the Pumping Lemma to show that the language $a^n b a^n$ is not regularA non-regular language satisfying the pumping lemmaProving non-regularity of $u u^R v$?Prove using pumping free lemma for context-free languagesProve that $L_1 = , 0^m 1^k 2^n ,vert, lvert m - n rvert = k ,$ is not regular using Pumping lemmaPumping lemma for context-free languages - Am I doing it right?













8












$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    9 hours ago











  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    8 hours ago






  • 3




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    5 hours ago











  • $begingroup$
    @ChenyiShiwen, so the pumping lemma does work.
    $endgroup$
    – Apass.Jack
    4 hours ago










  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – ChenyiShiwen
    2 hours ago















8












$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    9 hours ago











  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    8 hours ago






  • 3




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    5 hours ago











  • $begingroup$
    @ChenyiShiwen, so the pumping lemma does work.
    $endgroup$
    – Apass.Jack
    4 hours ago










  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – ChenyiShiwen
    2 hours ago













8












8








8





$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!







formal-languages automata context-free






share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









D.W.

102k12127291




102k12127291






New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 9 hours ago









ChenyiShiwenChenyiShiwen

434




434




New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    9 hours ago











  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    8 hours ago






  • 3




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    5 hours ago











  • $begingroup$
    @ChenyiShiwen, so the pumping lemma does work.
    $endgroup$
    – Apass.Jack
    4 hours ago










  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – ChenyiShiwen
    2 hours ago
















  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    9 hours ago











  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    8 hours ago






  • 3




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    5 hours ago











  • $begingroup$
    @ChenyiShiwen, so the pumping lemma does work.
    $endgroup$
    – Apass.Jack
    4 hours ago










  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – ChenyiShiwen
    2 hours ago















$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
9 hours ago





$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
9 hours ago













$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
8 hours ago




$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
8 hours ago




3




3




$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
5 hours ago





$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
5 hours ago













$begingroup$
@ChenyiShiwen, so the pumping lemma does work.
$endgroup$
– Apass.Jack
4 hours ago




$begingroup$
@ChenyiShiwen, so the pumping lemma does work.
$endgroup$
– Apass.Jack
4 hours ago












$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– ChenyiShiwen
2 hours ago




$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– ChenyiShiwen
2 hours ago










2 Answers
2






active

oldest

votes


















6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    5 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    5 hours ago


















4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    4 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    4 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105836%2flanguage-involving-irrational-number-is-not-a-cfl%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    5 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    5 hours ago















6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    5 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    5 hours ago













6












6








6





$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.






share|cite|improve this answer









$endgroup$



According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 6 hours ago









Yuval FilmusYuval Filmus

195k14183347




195k14183347











  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    5 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    5 hours ago
















  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    5 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    5 hours ago















$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– ChenyiShiwen
5 hours ago





$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– ChenyiShiwen
5 hours ago













$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
5 hours ago




$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
5 hours ago











4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    4 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    4 hours ago
















4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    4 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    4 hours ago














4












4








4





$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$



Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 4 hours ago

























answered 5 hours ago









Apass.JackApass.Jack

13.1k1939




13.1k1939











  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    4 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    4 hours ago

















  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    4 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    4 hours ago
















$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
4 hours ago





$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
4 hours ago













$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
4 hours ago




$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
4 hours ago












$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
4 hours ago





$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
4 hours ago











ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.












ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.











ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105836%2flanguage-involving-irrational-number-is-not-a-cfl%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр