Question about the proof of Second Isomorphism TheoremIsomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem

Start making guitar arrangements

Why did the EU agree to delay the Brexit deadline?

When were female captains banned from Starfleet?

Where does the bonus feat in the cleric starting package come from?

Is a bound state a stationary state?

Drawing ramified coverings with tikz

Approximating irrational number to rational number

The screen of my macbook suddenly broken down how can I do to recover

Why should universal income be universal?

What should you do if you miss a job interview (deliberately)?

Is it better practice to read straight from sheet music rather than memorize it?

Why is so much work done on numerical verification of the Riemann Hypothesis?

Did arcade monitors have same pixel aspect ratio as TV sets?

How do I color the graph in datavisualization?

Question about the proof of Second Isomorphism Theorem

Which one is correct as adjective “protruding” or “protruded”?

Not using 's' for he/she/it

Is the U.S. Code copyrighted by the Government?

Delivering sarcasm

Intuition of generalized eigenvector.

What is Cash Advance APR?

Can someone explain how this makes sense electrically?

Why does the Sun have different day lengths, but not the gas giants?

How can "mimic phobia" be cured or prevented?



Question about the proof of Second Isomorphism Theorem


Isomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem













4












$begingroup$


The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$



There is the proof of Abstract Algebra Thomas by W. Judson:




Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$




My question:



Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



Thank you.










share|cite|improve this question









New contributor




NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    4












    $begingroup$


    The Second Isomorphism Theorem:
    Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
    $$H/(Hcap N)cong(HN)/N$$



    There is the proof of Abstract Algebra Thomas by W. Judson:




    Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
    $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
    By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
    $$HN/N=phi(H)cong H/kerphi$$
    Since
    $$kerphi=hin H:hin N=Hcap N$$
    $HN/N=phi(H)cong H/Hcap N$




    My question:



    Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



    Thank you.










    share|cite|improve this question









    New contributor




    NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      4












      4








      4





      $begingroup$


      The Second Isomorphism Theorem:
      Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
      $$H/(Hcap N)cong(HN)/N$$



      There is the proof of Abstract Algebra Thomas by W. Judson:




      Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
      $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
      By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
      $$HN/N=phi(H)cong H/kerphi$$
      Since
      $$kerphi=hin H:hin N=Hcap N$$
      $HN/N=phi(H)cong H/Hcap N$




      My question:



      Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



      Thank you.










      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      The Second Isomorphism Theorem:
      Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
      $$H/(Hcap N)cong(HN)/N$$



      There is the proof of Abstract Algebra Thomas by W. Judson:




      Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
      $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
      By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
      $$HN/N=phi(H)cong H/kerphi$$
      Since
      $$kerphi=hin H:hin N=Hcap N$$
      $HN/N=phi(H)cong H/Hcap N$




      My question:



      Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



      Thank you.







      abstract-algebra group-theory group-isomorphism group-homomorphism






      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago









      Andrews

      1,2761421




      1,2761421






      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 4 hours ago









      NiaBieNiaBie

      232




      232




      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






          share|cite|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            NiaBie is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






                share|cite|improve this answer









                $endgroup$



                The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                Joshua MundingerJoshua Mundinger

                2,7621028




                2,7621028




















                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.












                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.











                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр