Compute the product of 3 dictionaries and concatenate keys and values The 2019 Stack Overflow Developer Survey Results Are In“Least Astonishment” and the Mutable Default ArgumentHow to merge two dictionaries in a single expression?How do I sort a list of dictionaries by a value of the dictionary?How do I sort a dictionary by value?Add new keys to a dictionary?Check if a given key already exists in a dictionaryHow do I concatenate two lists in Python?Iterating over dictionaries using 'for' loopsHow to remove a key from a Python dictionary?check two dictionaries that have similar keys but different valueshow to compare two dictionaries to check if a key is present in both of them
If a sorcerer casts the Banishment spell on a PC while in Avernus, does the PC return to their home plane?
Slides for 30 min~1 hr Skype tenure track application interview
Output the Arecibo Message
Is an up-to-date browser secure on an out-of-date OS?
How to translate "being like"?
Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?
Is it safe to harvest rainwater that fell on solar panels?
Geography at the pixel level
Loose spokes after only a few rides
How come people say “Would of”?
Button changing its text & action. Good or terrible?
Match Roman Numerals
Ubuntu Server install with full GUI
Mathematics of imaging the black hole
What do I do when my TA workload is more than expected?
Star Trek - X-shaped Item on Regula/Orbital Office Starbases
Why does the nucleus not repel itself?
If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?
Is it okay to consider publishing in my first year of PhD?
How did passengers keep warm on sail ships?
Correct punctuation for showing a character's confusion
How do you keep chess fun when your opponent constantly beats you?
How to support a colleague who finds meetings extremely tiring?
Kerning for subscripts of sigma?
Compute the product of 3 dictionaries and concatenate keys and values
The 2019 Stack Overflow Developer Survey Results Are In“Least Astonishment” and the Mutable Default ArgumentHow to merge two dictionaries in a single expression?How do I sort a list of dictionaries by a value of the dictionary?How do I sort a dictionary by value?Add new keys to a dictionary?Check if a given key already exists in a dictionaryHow do I concatenate two lists in Python?Iterating over dictionaries using 'for' loopsHow to remove a key from a Python dictionary?check two dictionaries that have similar keys but different valueshow to compare two dictionaries to check if a key is present in both of them
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;
Assuming that I have 3 different dictionaries:
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
I want to compute the product of these dictionaries (excluding the product between dict2
and dict3
) and combine both the keys and values where the keys are concatenated with _
and values with ' and '
The desired output would be a single dictionary:
# dict1 x dict2
"A_B": "a and b",
"A_C": "a and c",
"A_D": "a and d",
"A_E": "a and e",
# dict1 x dict3
"A_F": "a and f",
"A_G": "a and g",
# dict1 x dict2 x dict3
"A_B_F": "a and b and f",
"A_B_G": "a and b and g",
"A_C_F": "a and c and f",
"A_C_G": "a and c and g",
"A_D_F": "a and d and f",
"A_D_G": "a and d and g",
"A_E_F": "a and e and f",
"A_E_G": "a and e and g"
I had a look at the documentation for itertools
but I was not able to understand how I can achieve the desired output.
python
add a comment |
Assuming that I have 3 different dictionaries:
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
I want to compute the product of these dictionaries (excluding the product between dict2
and dict3
) and combine both the keys and values where the keys are concatenated with _
and values with ' and '
The desired output would be a single dictionary:
# dict1 x dict2
"A_B": "a and b",
"A_C": "a and c",
"A_D": "a and d",
"A_E": "a and e",
# dict1 x dict3
"A_F": "a and f",
"A_G": "a and g",
# dict1 x dict2 x dict3
"A_B_F": "a and b and f",
"A_B_G": "a and b and g",
"A_C_F": "a and c and f",
"A_C_G": "a and c and g",
"A_D_F": "a and d and f",
"A_D_G": "a and d and g",
"A_E_F": "a and e and f",
"A_E_G": "a and e and g"
I had a look at the documentation for itertools
but I was not able to understand how I can achieve the desired output.
python
add a comment |
Assuming that I have 3 different dictionaries:
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
I want to compute the product of these dictionaries (excluding the product between dict2
and dict3
) and combine both the keys and values where the keys are concatenated with _
and values with ' and '
The desired output would be a single dictionary:
# dict1 x dict2
"A_B": "a and b",
"A_C": "a and c",
"A_D": "a and d",
"A_E": "a and e",
# dict1 x dict3
"A_F": "a and f",
"A_G": "a and g",
# dict1 x dict2 x dict3
"A_B_F": "a and b and f",
"A_B_G": "a and b and g",
"A_C_F": "a and c and f",
"A_C_G": "a and c and g",
"A_D_F": "a and d and f",
"A_D_G": "a and d and g",
"A_E_F": "a and e and f",
"A_E_G": "a and e and g"
I had a look at the documentation for itertools
but I was not able to understand how I can achieve the desired output.
python
Assuming that I have 3 different dictionaries:
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
I want to compute the product of these dictionaries (excluding the product between dict2
and dict3
) and combine both the keys and values where the keys are concatenated with _
and values with ' and '
The desired output would be a single dictionary:
# dict1 x dict2
"A_B": "a and b",
"A_C": "a and c",
"A_D": "a and d",
"A_E": "a and e",
# dict1 x dict3
"A_F": "a and f",
"A_G": "a and g",
# dict1 x dict2 x dict3
"A_B_F": "a and b and f",
"A_B_G": "a and b and g",
"A_C_F": "a and c and f",
"A_C_G": "a and c and g",
"A_D_F": "a and d and f",
"A_D_G": "a and d and g",
"A_E_F": "a and e and f",
"A_E_G": "a and e and g"
I had a look at the documentation for itertools
but I was not able to understand how I can achieve the desired output.
python
python
asked 7 hours ago
Old-SchoolOld-School
606
606
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
The function that will do the job is itertools.product
.
First, here is how you can print out the product dict1 x dict2 x dict3
:
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
print("_".join(k), "-", " and ".join(v))
Output:
A_B_F - a and b and f
A_B_G - a and b and g
A_C_F - a and c and f
A_C_G - a and c and g
A_D_F - a and d and f
A_D_G - a and d and g
A_E_F - a and e and f
A_E_G - a and e and g
Now, just populate a result
dictionary:
result =
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
You can now add to this dictionary the dict1 x dict2
and dict1 x dict3
products, that are even simpler to compute.
Based on @ShadowRanger's comment, here is a complete snippet:
import itertools
import pprint
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
result =
for dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
for t in itertools.product(*(d.items() for d in dicts)):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
pprint.pprint(result)
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
1
isfunctools
supposed to beitertools
?
– Ben Jones
7 hours ago
1
@BenJones Yeah sure my bad, I always mix them up...
– Right leg
7 hours ago
No worries. Now I know aboutfunctools
!
– Ben Jones
7 hours ago
1
@BenJones Wanna learn about some more magic? Check outmore_itertools
:)
– Right leg
7 hours ago
Adding an outer loop offor dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
and making the inner loopfor t in product(*[d.items() for d in dicts]):
would let you produce the result with minimal code repetition.
– ShadowRanger
7 hours ago
|
show 3 more comments
To produce all pairings, you can use two recursive generator functions: one to find the overall combinations of dictionaries, and the other to pair the keys and values:
def pair_dicts(data, c):
if not data:
keys, values = zip(*c)
yield ('_'.join(keys), ' and '.join(values))
else:
for i in data[0]:
yield from pair_dicts(data[1:], c+[i])
def combos(d, c = []):
if len(c) == len(d):
yield c
else:
if len(c) > 1:
yield c
for i in d:
if all(h != i for h in c):
yield from combos(d, c+[i])
new_d = [[list(c.items()) for c in i] for i in combos([dict1, dict2, dict3])]
final_result = dict(i for b in new_d for i in pair_dicts(b, []))
Output:
'A_B': 'a and b', 'A_C': 'a and c', 'A_D': 'a and d', 'A_E': 'a and e', 'A_B_F': 'a and b and f', 'A_B_G': 'a and b and g', 'A_C_F': 'a and c and f', 'A_C_G': 'a and c and g', 'A_D_F': 'a and d and f', 'A_D_G': 'a and d and g', 'A_E_F': 'a and e and f', 'A_E_G': 'a and e and g', 'A_F': 'a and f', 'A_G': 'a and g', 'A_F_B': 'a and f and b', 'A_F_C': 'a and f and c', 'A_F_D': 'a and f and d', 'A_F_E': 'a and f and e', 'A_G_B': 'a and g and b', 'A_G_C': 'a and g and c', 'A_G_D': 'a and g and d', 'A_G_E': 'a and g and e', 'B_A': 'b and a', 'C_A': 'c and a', 'D_A': 'd and a', 'E_A': 'e and a', 'B_A_F': 'b and a and f', 'B_A_G': 'b and a and g', 'C_A_F': 'c and a and f', 'C_A_G': 'c and a and g', 'D_A_F': 'd and a and f', 'D_A_G': 'd and a and g', 'E_A_F': 'e and a and f', 'E_A_G': 'e and a and g', 'B_F': 'b and f', 'B_G': 'b and g', 'C_F': 'c and f', 'C_G': 'c and g', 'D_F': 'd and f', 'D_G': 'd and g', 'E_F': 'e and f', 'E_G': 'e and g', 'B_F_A': 'b and f and a', 'B_G_A': 'b and g and a', 'C_F_A': 'c and f and a', 'C_G_A': 'c and g and a', 'D_F_A': 'd and f and a', 'D_G_A': 'd and g and a', 'E_F_A': 'e and f and a', 'E_G_A': 'e and g and a', 'F_A': 'f and a', 'G_A': 'g and a', 'F_A_B': 'f and a and b', 'F_A_C': 'f and a and c', 'F_A_D': 'f and a and d', 'F_A_E': 'f and a and e', 'G_A_B': 'g and a and b', 'G_A_C': 'g and a and c', 'G_A_D': 'g and a and d', 'G_A_E': 'g and a and e', 'F_B': 'f and b', 'F_C': 'f and c', 'F_D': 'f and d', 'F_E': 'f and e', 'G_B': 'g and b', 'G_C': 'g and c', 'G_D': 'g and d', 'G_E': 'g and e', 'F_B_A': 'f and b and a', 'F_C_A': 'f and c and a', 'F_D_A': 'f and d and a', 'F_E_A': 'f and e and a', 'G_B_A': 'g and b and a', 'G_C_A': 'g and c and a', 'G_D_A': 'g and d and a', 'G_E_A': 'g and e and a'
Although it's not an issue here, I'd generally advise against using a list or any other mutable value as a default value, and would rather go fordef combos(d, c=None): if c is None: c = []
. See stackoverflow.com/questions/1132941/…
– Right leg
6 hours ago
add a comment |
I created a (not so nice) function to do your task with arbitrary number of dictionaries.
(Explanation below)
import itertools as it
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
def custom_dict_product(dictionaries):
return dict(zip(map("_".join, it.product(*map(dict.keys, dictionaries))),
map(" and ".join, it.product(*map(dict.values, dictionaries)))))
result = custom_dict_product([dict1,dict2])
result.update(custom_dict_product([dict1,dict3]))
result.update(custom_dict_product([dict1,dict2,dict3]))
result
#'A_B': 'a and b',
# 'A_B_F': 'a and b and f',
# 'A_B_G': 'a and b and g',
# 'A_C': 'a and c',
# 'A_C_F': 'a and c and f',
# 'A_C_G': 'a and c and g',
# 'A_D': 'a and d',
# 'A_D_F': 'a and d and f',
# 'A_D_G': 'a and d and g',
# 'A_E': 'a and e',
# 'A_E_F': 'a and e and f',
# 'A_E_G': 'a and e and g',
# 'A_F': 'a and f',
# 'A_G': 'a and g'
The function takes the given dictionaries and gets their keys and values, which is done by map(dict.keys, dictionaries))
and map(dict.values, dictionaries))
. The results of the first call
list(it.product(*map(dict.keys, [dict1,dict2])))
# [('A', 'C'), ('A', 'E'), ('A', 'B'), ('A', 'D')]
The tuples insides this list are then forced to your desired structure with join
(and again an map call to do this for every element):
"_".join(('A', 'C'))
# 'A_C'
list(map("_".join, it.product(*map(dict.keys, [dict1,dict2]))))
# ['A_C', 'A_E', 'A_B', 'A_D']
Finally the two resulting lists are transformed to tuples of (keys, values)
with the call of zip
and handed to the dictionary creation.
New contributor
add a comment |
Here a dirty, but working, solution that makes use of itertools
from itertools import product, combinations
# create a list and sum dict to be used later
t = [dict1, dict2, dict3]
k =
for d in t:
k.update(d)
# iterate over "i" order of combinations ("dict1_X" or "dict1_X_Y") and
# the cartesian product of keys for each combination
results =
for i in range(2, 4):
a = [
[
results.update("_".join(y): " and ".join([k[j] for j in y]))
for y in product(*x)
]
for x in combinations(t, i)
if dict1 in x
]
results
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
New contributor
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55636895%2fcompute-the-product-of-3-dictionaries-and-concatenate-keys-and-values%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
The function that will do the job is itertools.product
.
First, here is how you can print out the product dict1 x dict2 x dict3
:
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
print("_".join(k), "-", " and ".join(v))
Output:
A_B_F - a and b and f
A_B_G - a and b and g
A_C_F - a and c and f
A_C_G - a and c and g
A_D_F - a and d and f
A_D_G - a and d and g
A_E_F - a and e and f
A_E_G - a and e and g
Now, just populate a result
dictionary:
result =
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
You can now add to this dictionary the dict1 x dict2
and dict1 x dict3
products, that are even simpler to compute.
Based on @ShadowRanger's comment, here is a complete snippet:
import itertools
import pprint
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
result =
for dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
for t in itertools.product(*(d.items() for d in dicts)):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
pprint.pprint(result)
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
1
isfunctools
supposed to beitertools
?
– Ben Jones
7 hours ago
1
@BenJones Yeah sure my bad, I always mix them up...
– Right leg
7 hours ago
No worries. Now I know aboutfunctools
!
– Ben Jones
7 hours ago
1
@BenJones Wanna learn about some more magic? Check outmore_itertools
:)
– Right leg
7 hours ago
Adding an outer loop offor dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
and making the inner loopfor t in product(*[d.items() for d in dicts]):
would let you produce the result with minimal code repetition.
– ShadowRanger
7 hours ago
|
show 3 more comments
The function that will do the job is itertools.product
.
First, here is how you can print out the product dict1 x dict2 x dict3
:
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
print("_".join(k), "-", " and ".join(v))
Output:
A_B_F - a and b and f
A_B_G - a and b and g
A_C_F - a and c and f
A_C_G - a and c and g
A_D_F - a and d and f
A_D_G - a and d and g
A_E_F - a and e and f
A_E_G - a and e and g
Now, just populate a result
dictionary:
result =
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
You can now add to this dictionary the dict1 x dict2
and dict1 x dict3
products, that are even simpler to compute.
Based on @ShadowRanger's comment, here is a complete snippet:
import itertools
import pprint
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
result =
for dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
for t in itertools.product(*(d.items() for d in dicts)):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
pprint.pprint(result)
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
1
isfunctools
supposed to beitertools
?
– Ben Jones
7 hours ago
1
@BenJones Yeah sure my bad, I always mix them up...
– Right leg
7 hours ago
No worries. Now I know aboutfunctools
!
– Ben Jones
7 hours ago
1
@BenJones Wanna learn about some more magic? Check outmore_itertools
:)
– Right leg
7 hours ago
Adding an outer loop offor dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
and making the inner loopfor t in product(*[d.items() for d in dicts]):
would let you produce the result with minimal code repetition.
– ShadowRanger
7 hours ago
|
show 3 more comments
The function that will do the job is itertools.product
.
First, here is how you can print out the product dict1 x dict2 x dict3
:
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
print("_".join(k), "-", " and ".join(v))
Output:
A_B_F - a and b and f
A_B_G - a and b and g
A_C_F - a and c and f
A_C_G - a and c and g
A_D_F - a and d and f
A_D_G - a and d and g
A_E_F - a and e and f
A_E_G - a and e and g
Now, just populate a result
dictionary:
result =
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
You can now add to this dictionary the dict1 x dict2
and dict1 x dict3
products, that are even simpler to compute.
Based on @ShadowRanger's comment, here is a complete snippet:
import itertools
import pprint
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
result =
for dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
for t in itertools.product(*(d.items() for d in dicts)):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
pprint.pprint(result)
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
The function that will do the job is itertools.product
.
First, here is how you can print out the product dict1 x dict2 x dict3
:
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
print("_".join(k), "-", " and ".join(v))
Output:
A_B_F - a and b and f
A_B_G - a and b and g
A_C_F - a and c and f
A_C_G - a and c and g
A_D_F - a and d and f
A_D_G - a and d and g
A_E_F - a and e and f
A_E_G - a and e and g
Now, just populate a result
dictionary:
result =
for t in product(dict1.items(), dict2.items(), dict3.items()):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
You can now add to this dictionary the dict1 x dict2
and dict1 x dict3
products, that are even simpler to compute.
Based on @ShadowRanger's comment, here is a complete snippet:
import itertools
import pprint
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
result =
for dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
for t in itertools.product(*(d.items() for d in dicts)):
k, v = zip(*t)
result["_".join(k)] = " and ".join(v)
pprint.pprint(result)
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
edited 7 hours ago
answered 7 hours ago
Right legRight leg
8,54342450
8,54342450
1
isfunctools
supposed to beitertools
?
– Ben Jones
7 hours ago
1
@BenJones Yeah sure my bad, I always mix them up...
– Right leg
7 hours ago
No worries. Now I know aboutfunctools
!
– Ben Jones
7 hours ago
1
@BenJones Wanna learn about some more magic? Check outmore_itertools
:)
– Right leg
7 hours ago
Adding an outer loop offor dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
and making the inner loopfor t in product(*[d.items() for d in dicts]):
would let you produce the result with minimal code repetition.
– ShadowRanger
7 hours ago
|
show 3 more comments
1
isfunctools
supposed to beitertools
?
– Ben Jones
7 hours ago
1
@BenJones Yeah sure my bad, I always mix them up...
– Right leg
7 hours ago
No worries. Now I know aboutfunctools
!
– Ben Jones
7 hours ago
1
@BenJones Wanna learn about some more magic? Check outmore_itertools
:)
– Right leg
7 hours ago
Adding an outer loop offor dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
and making the inner loopfor t in product(*[d.items() for d in dicts]):
would let you produce the result with minimal code repetition.
– ShadowRanger
7 hours ago
1
1
is
functools
supposed to be itertools
?– Ben Jones
7 hours ago
is
functools
supposed to be itertools
?– Ben Jones
7 hours ago
1
1
@BenJones Yeah sure my bad, I always mix them up...
– Right leg
7 hours ago
@BenJones Yeah sure my bad, I always mix them up...
– Right leg
7 hours ago
No worries. Now I know about
functools
!– Ben Jones
7 hours ago
No worries. Now I know about
functools
!– Ben Jones
7 hours ago
1
1
@BenJones Wanna learn about some more magic? Check out
more_itertools
:)– Right leg
7 hours ago
@BenJones Wanna learn about some more magic? Check out
more_itertools
:)– Right leg
7 hours ago
Adding an outer loop of
for dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
and making the inner loop for t in product(*[d.items() for d in dicts]):
would let you produce the result with minimal code repetition.– ShadowRanger
7 hours ago
Adding an outer loop of
for dicts in ((dict1, dict2), (dict1, dict3), (dict1, dict2, dict3)):
and making the inner loop for t in product(*[d.items() for d in dicts]):
would let you produce the result with minimal code repetition.– ShadowRanger
7 hours ago
|
show 3 more comments
To produce all pairings, you can use two recursive generator functions: one to find the overall combinations of dictionaries, and the other to pair the keys and values:
def pair_dicts(data, c):
if not data:
keys, values = zip(*c)
yield ('_'.join(keys), ' and '.join(values))
else:
for i in data[0]:
yield from pair_dicts(data[1:], c+[i])
def combos(d, c = []):
if len(c) == len(d):
yield c
else:
if len(c) > 1:
yield c
for i in d:
if all(h != i for h in c):
yield from combos(d, c+[i])
new_d = [[list(c.items()) for c in i] for i in combos([dict1, dict2, dict3])]
final_result = dict(i for b in new_d for i in pair_dicts(b, []))
Output:
'A_B': 'a and b', 'A_C': 'a and c', 'A_D': 'a and d', 'A_E': 'a and e', 'A_B_F': 'a and b and f', 'A_B_G': 'a and b and g', 'A_C_F': 'a and c and f', 'A_C_G': 'a and c and g', 'A_D_F': 'a and d and f', 'A_D_G': 'a and d and g', 'A_E_F': 'a and e and f', 'A_E_G': 'a and e and g', 'A_F': 'a and f', 'A_G': 'a and g', 'A_F_B': 'a and f and b', 'A_F_C': 'a and f and c', 'A_F_D': 'a and f and d', 'A_F_E': 'a and f and e', 'A_G_B': 'a and g and b', 'A_G_C': 'a and g and c', 'A_G_D': 'a and g and d', 'A_G_E': 'a and g and e', 'B_A': 'b and a', 'C_A': 'c and a', 'D_A': 'd and a', 'E_A': 'e and a', 'B_A_F': 'b and a and f', 'B_A_G': 'b and a and g', 'C_A_F': 'c and a and f', 'C_A_G': 'c and a and g', 'D_A_F': 'd and a and f', 'D_A_G': 'd and a and g', 'E_A_F': 'e and a and f', 'E_A_G': 'e and a and g', 'B_F': 'b and f', 'B_G': 'b and g', 'C_F': 'c and f', 'C_G': 'c and g', 'D_F': 'd and f', 'D_G': 'd and g', 'E_F': 'e and f', 'E_G': 'e and g', 'B_F_A': 'b and f and a', 'B_G_A': 'b and g and a', 'C_F_A': 'c and f and a', 'C_G_A': 'c and g and a', 'D_F_A': 'd and f and a', 'D_G_A': 'd and g and a', 'E_F_A': 'e and f and a', 'E_G_A': 'e and g and a', 'F_A': 'f and a', 'G_A': 'g and a', 'F_A_B': 'f and a and b', 'F_A_C': 'f and a and c', 'F_A_D': 'f and a and d', 'F_A_E': 'f and a and e', 'G_A_B': 'g and a and b', 'G_A_C': 'g and a and c', 'G_A_D': 'g and a and d', 'G_A_E': 'g and a and e', 'F_B': 'f and b', 'F_C': 'f and c', 'F_D': 'f and d', 'F_E': 'f and e', 'G_B': 'g and b', 'G_C': 'g and c', 'G_D': 'g and d', 'G_E': 'g and e', 'F_B_A': 'f and b and a', 'F_C_A': 'f and c and a', 'F_D_A': 'f and d and a', 'F_E_A': 'f and e and a', 'G_B_A': 'g and b and a', 'G_C_A': 'g and c and a', 'G_D_A': 'g and d and a', 'G_E_A': 'g and e and a'
Although it's not an issue here, I'd generally advise against using a list or any other mutable value as a default value, and would rather go fordef combos(d, c=None): if c is None: c = []
. See stackoverflow.com/questions/1132941/…
– Right leg
6 hours ago
add a comment |
To produce all pairings, you can use two recursive generator functions: one to find the overall combinations of dictionaries, and the other to pair the keys and values:
def pair_dicts(data, c):
if not data:
keys, values = zip(*c)
yield ('_'.join(keys), ' and '.join(values))
else:
for i in data[0]:
yield from pair_dicts(data[1:], c+[i])
def combos(d, c = []):
if len(c) == len(d):
yield c
else:
if len(c) > 1:
yield c
for i in d:
if all(h != i for h in c):
yield from combos(d, c+[i])
new_d = [[list(c.items()) for c in i] for i in combos([dict1, dict2, dict3])]
final_result = dict(i for b in new_d for i in pair_dicts(b, []))
Output:
'A_B': 'a and b', 'A_C': 'a and c', 'A_D': 'a and d', 'A_E': 'a and e', 'A_B_F': 'a and b and f', 'A_B_G': 'a and b and g', 'A_C_F': 'a and c and f', 'A_C_G': 'a and c and g', 'A_D_F': 'a and d and f', 'A_D_G': 'a and d and g', 'A_E_F': 'a and e and f', 'A_E_G': 'a and e and g', 'A_F': 'a and f', 'A_G': 'a and g', 'A_F_B': 'a and f and b', 'A_F_C': 'a and f and c', 'A_F_D': 'a and f and d', 'A_F_E': 'a and f and e', 'A_G_B': 'a and g and b', 'A_G_C': 'a and g and c', 'A_G_D': 'a and g and d', 'A_G_E': 'a and g and e', 'B_A': 'b and a', 'C_A': 'c and a', 'D_A': 'd and a', 'E_A': 'e and a', 'B_A_F': 'b and a and f', 'B_A_G': 'b and a and g', 'C_A_F': 'c and a and f', 'C_A_G': 'c and a and g', 'D_A_F': 'd and a and f', 'D_A_G': 'd and a and g', 'E_A_F': 'e and a and f', 'E_A_G': 'e and a and g', 'B_F': 'b and f', 'B_G': 'b and g', 'C_F': 'c and f', 'C_G': 'c and g', 'D_F': 'd and f', 'D_G': 'd and g', 'E_F': 'e and f', 'E_G': 'e and g', 'B_F_A': 'b and f and a', 'B_G_A': 'b and g and a', 'C_F_A': 'c and f and a', 'C_G_A': 'c and g and a', 'D_F_A': 'd and f and a', 'D_G_A': 'd and g and a', 'E_F_A': 'e and f and a', 'E_G_A': 'e and g and a', 'F_A': 'f and a', 'G_A': 'g and a', 'F_A_B': 'f and a and b', 'F_A_C': 'f and a and c', 'F_A_D': 'f and a and d', 'F_A_E': 'f and a and e', 'G_A_B': 'g and a and b', 'G_A_C': 'g and a and c', 'G_A_D': 'g and a and d', 'G_A_E': 'g and a and e', 'F_B': 'f and b', 'F_C': 'f and c', 'F_D': 'f and d', 'F_E': 'f and e', 'G_B': 'g and b', 'G_C': 'g and c', 'G_D': 'g and d', 'G_E': 'g and e', 'F_B_A': 'f and b and a', 'F_C_A': 'f and c and a', 'F_D_A': 'f and d and a', 'F_E_A': 'f and e and a', 'G_B_A': 'g and b and a', 'G_C_A': 'g and c and a', 'G_D_A': 'g and d and a', 'G_E_A': 'g and e and a'
Although it's not an issue here, I'd generally advise against using a list or any other mutable value as a default value, and would rather go fordef combos(d, c=None): if c is None: c = []
. See stackoverflow.com/questions/1132941/…
– Right leg
6 hours ago
add a comment |
To produce all pairings, you can use two recursive generator functions: one to find the overall combinations of dictionaries, and the other to pair the keys and values:
def pair_dicts(data, c):
if not data:
keys, values = zip(*c)
yield ('_'.join(keys), ' and '.join(values))
else:
for i in data[0]:
yield from pair_dicts(data[1:], c+[i])
def combos(d, c = []):
if len(c) == len(d):
yield c
else:
if len(c) > 1:
yield c
for i in d:
if all(h != i for h in c):
yield from combos(d, c+[i])
new_d = [[list(c.items()) for c in i] for i in combos([dict1, dict2, dict3])]
final_result = dict(i for b in new_d for i in pair_dicts(b, []))
Output:
'A_B': 'a and b', 'A_C': 'a and c', 'A_D': 'a and d', 'A_E': 'a and e', 'A_B_F': 'a and b and f', 'A_B_G': 'a and b and g', 'A_C_F': 'a and c and f', 'A_C_G': 'a and c and g', 'A_D_F': 'a and d and f', 'A_D_G': 'a and d and g', 'A_E_F': 'a and e and f', 'A_E_G': 'a and e and g', 'A_F': 'a and f', 'A_G': 'a and g', 'A_F_B': 'a and f and b', 'A_F_C': 'a and f and c', 'A_F_D': 'a and f and d', 'A_F_E': 'a and f and e', 'A_G_B': 'a and g and b', 'A_G_C': 'a and g and c', 'A_G_D': 'a and g and d', 'A_G_E': 'a and g and e', 'B_A': 'b and a', 'C_A': 'c and a', 'D_A': 'd and a', 'E_A': 'e and a', 'B_A_F': 'b and a and f', 'B_A_G': 'b and a and g', 'C_A_F': 'c and a and f', 'C_A_G': 'c and a and g', 'D_A_F': 'd and a and f', 'D_A_G': 'd and a and g', 'E_A_F': 'e and a and f', 'E_A_G': 'e and a and g', 'B_F': 'b and f', 'B_G': 'b and g', 'C_F': 'c and f', 'C_G': 'c and g', 'D_F': 'd and f', 'D_G': 'd and g', 'E_F': 'e and f', 'E_G': 'e and g', 'B_F_A': 'b and f and a', 'B_G_A': 'b and g and a', 'C_F_A': 'c and f and a', 'C_G_A': 'c and g and a', 'D_F_A': 'd and f and a', 'D_G_A': 'd and g and a', 'E_F_A': 'e and f and a', 'E_G_A': 'e and g and a', 'F_A': 'f and a', 'G_A': 'g and a', 'F_A_B': 'f and a and b', 'F_A_C': 'f and a and c', 'F_A_D': 'f and a and d', 'F_A_E': 'f and a and e', 'G_A_B': 'g and a and b', 'G_A_C': 'g and a and c', 'G_A_D': 'g and a and d', 'G_A_E': 'g and a and e', 'F_B': 'f and b', 'F_C': 'f and c', 'F_D': 'f and d', 'F_E': 'f and e', 'G_B': 'g and b', 'G_C': 'g and c', 'G_D': 'g and d', 'G_E': 'g and e', 'F_B_A': 'f and b and a', 'F_C_A': 'f and c and a', 'F_D_A': 'f and d and a', 'F_E_A': 'f and e and a', 'G_B_A': 'g and b and a', 'G_C_A': 'g and c and a', 'G_D_A': 'g and d and a', 'G_E_A': 'g and e and a'
To produce all pairings, you can use two recursive generator functions: one to find the overall combinations of dictionaries, and the other to pair the keys and values:
def pair_dicts(data, c):
if not data:
keys, values = zip(*c)
yield ('_'.join(keys), ' and '.join(values))
else:
for i in data[0]:
yield from pair_dicts(data[1:], c+[i])
def combos(d, c = []):
if len(c) == len(d):
yield c
else:
if len(c) > 1:
yield c
for i in d:
if all(h != i for h in c):
yield from combos(d, c+[i])
new_d = [[list(c.items()) for c in i] for i in combos([dict1, dict2, dict3])]
final_result = dict(i for b in new_d for i in pair_dicts(b, []))
Output:
'A_B': 'a and b', 'A_C': 'a and c', 'A_D': 'a and d', 'A_E': 'a and e', 'A_B_F': 'a and b and f', 'A_B_G': 'a and b and g', 'A_C_F': 'a and c and f', 'A_C_G': 'a and c and g', 'A_D_F': 'a and d and f', 'A_D_G': 'a and d and g', 'A_E_F': 'a and e and f', 'A_E_G': 'a and e and g', 'A_F': 'a and f', 'A_G': 'a and g', 'A_F_B': 'a and f and b', 'A_F_C': 'a and f and c', 'A_F_D': 'a and f and d', 'A_F_E': 'a and f and e', 'A_G_B': 'a and g and b', 'A_G_C': 'a and g and c', 'A_G_D': 'a and g and d', 'A_G_E': 'a and g and e', 'B_A': 'b and a', 'C_A': 'c and a', 'D_A': 'd and a', 'E_A': 'e and a', 'B_A_F': 'b and a and f', 'B_A_G': 'b and a and g', 'C_A_F': 'c and a and f', 'C_A_G': 'c and a and g', 'D_A_F': 'd and a and f', 'D_A_G': 'd and a and g', 'E_A_F': 'e and a and f', 'E_A_G': 'e and a and g', 'B_F': 'b and f', 'B_G': 'b and g', 'C_F': 'c and f', 'C_G': 'c and g', 'D_F': 'd and f', 'D_G': 'd and g', 'E_F': 'e and f', 'E_G': 'e and g', 'B_F_A': 'b and f and a', 'B_G_A': 'b and g and a', 'C_F_A': 'c and f and a', 'C_G_A': 'c and g and a', 'D_F_A': 'd and f and a', 'D_G_A': 'd and g and a', 'E_F_A': 'e and f and a', 'E_G_A': 'e and g and a', 'F_A': 'f and a', 'G_A': 'g and a', 'F_A_B': 'f and a and b', 'F_A_C': 'f and a and c', 'F_A_D': 'f and a and d', 'F_A_E': 'f and a and e', 'G_A_B': 'g and a and b', 'G_A_C': 'g and a and c', 'G_A_D': 'g and a and d', 'G_A_E': 'g and a and e', 'F_B': 'f and b', 'F_C': 'f and c', 'F_D': 'f and d', 'F_E': 'f and e', 'G_B': 'g and b', 'G_C': 'g and c', 'G_D': 'g and d', 'G_E': 'g and e', 'F_B_A': 'f and b and a', 'F_C_A': 'f and c and a', 'F_D_A': 'f and d and a', 'F_E_A': 'f and e and a', 'G_B_A': 'g and b and a', 'G_C_A': 'g and c and a', 'G_D_A': 'g and d and a', 'G_E_A': 'g and e and a'
answered 7 hours ago
Ajax1234Ajax1234
43k42954
43k42954
Although it's not an issue here, I'd generally advise against using a list or any other mutable value as a default value, and would rather go fordef combos(d, c=None): if c is None: c = []
. See stackoverflow.com/questions/1132941/…
– Right leg
6 hours ago
add a comment |
Although it's not an issue here, I'd generally advise against using a list or any other mutable value as a default value, and would rather go fordef combos(d, c=None): if c is None: c = []
. See stackoverflow.com/questions/1132941/…
– Right leg
6 hours ago
Although it's not an issue here, I'd generally advise against using a list or any other mutable value as a default value, and would rather go for
def combos(d, c=None): if c is None: c = []
. See stackoverflow.com/questions/1132941/…– Right leg
6 hours ago
Although it's not an issue here, I'd generally advise against using a list or any other mutable value as a default value, and would rather go for
def combos(d, c=None): if c is None: c = []
. See stackoverflow.com/questions/1132941/…– Right leg
6 hours ago
add a comment |
I created a (not so nice) function to do your task with arbitrary number of dictionaries.
(Explanation below)
import itertools as it
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
def custom_dict_product(dictionaries):
return dict(zip(map("_".join, it.product(*map(dict.keys, dictionaries))),
map(" and ".join, it.product(*map(dict.values, dictionaries)))))
result = custom_dict_product([dict1,dict2])
result.update(custom_dict_product([dict1,dict3]))
result.update(custom_dict_product([dict1,dict2,dict3]))
result
#'A_B': 'a and b',
# 'A_B_F': 'a and b and f',
# 'A_B_G': 'a and b and g',
# 'A_C': 'a and c',
# 'A_C_F': 'a and c and f',
# 'A_C_G': 'a and c and g',
# 'A_D': 'a and d',
# 'A_D_F': 'a and d and f',
# 'A_D_G': 'a and d and g',
# 'A_E': 'a and e',
# 'A_E_F': 'a and e and f',
# 'A_E_G': 'a and e and g',
# 'A_F': 'a and f',
# 'A_G': 'a and g'
The function takes the given dictionaries and gets their keys and values, which is done by map(dict.keys, dictionaries))
and map(dict.values, dictionaries))
. The results of the first call
list(it.product(*map(dict.keys, [dict1,dict2])))
# [('A', 'C'), ('A', 'E'), ('A', 'B'), ('A', 'D')]
The tuples insides this list are then forced to your desired structure with join
(and again an map call to do this for every element):
"_".join(('A', 'C'))
# 'A_C'
list(map("_".join, it.product(*map(dict.keys, [dict1,dict2]))))
# ['A_C', 'A_E', 'A_B', 'A_D']
Finally the two resulting lists are transformed to tuples of (keys, values)
with the call of zip
and handed to the dictionary creation.
New contributor
add a comment |
I created a (not so nice) function to do your task with arbitrary number of dictionaries.
(Explanation below)
import itertools as it
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
def custom_dict_product(dictionaries):
return dict(zip(map("_".join, it.product(*map(dict.keys, dictionaries))),
map(" and ".join, it.product(*map(dict.values, dictionaries)))))
result = custom_dict_product([dict1,dict2])
result.update(custom_dict_product([dict1,dict3]))
result.update(custom_dict_product([dict1,dict2,dict3]))
result
#'A_B': 'a and b',
# 'A_B_F': 'a and b and f',
# 'A_B_G': 'a and b and g',
# 'A_C': 'a and c',
# 'A_C_F': 'a and c and f',
# 'A_C_G': 'a and c and g',
# 'A_D': 'a and d',
# 'A_D_F': 'a and d and f',
# 'A_D_G': 'a and d and g',
# 'A_E': 'a and e',
# 'A_E_F': 'a and e and f',
# 'A_E_G': 'a and e and g',
# 'A_F': 'a and f',
# 'A_G': 'a and g'
The function takes the given dictionaries and gets their keys and values, which is done by map(dict.keys, dictionaries))
and map(dict.values, dictionaries))
. The results of the first call
list(it.product(*map(dict.keys, [dict1,dict2])))
# [('A', 'C'), ('A', 'E'), ('A', 'B'), ('A', 'D')]
The tuples insides this list are then forced to your desired structure with join
(and again an map call to do this for every element):
"_".join(('A', 'C'))
# 'A_C'
list(map("_".join, it.product(*map(dict.keys, [dict1,dict2]))))
# ['A_C', 'A_E', 'A_B', 'A_D']
Finally the two resulting lists are transformed to tuples of (keys, values)
with the call of zip
and handed to the dictionary creation.
New contributor
add a comment |
I created a (not so nice) function to do your task with arbitrary number of dictionaries.
(Explanation below)
import itertools as it
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
def custom_dict_product(dictionaries):
return dict(zip(map("_".join, it.product(*map(dict.keys, dictionaries))),
map(" and ".join, it.product(*map(dict.values, dictionaries)))))
result = custom_dict_product([dict1,dict2])
result.update(custom_dict_product([dict1,dict3]))
result.update(custom_dict_product([dict1,dict2,dict3]))
result
#'A_B': 'a and b',
# 'A_B_F': 'a and b and f',
# 'A_B_G': 'a and b and g',
# 'A_C': 'a and c',
# 'A_C_F': 'a and c and f',
# 'A_C_G': 'a and c and g',
# 'A_D': 'a and d',
# 'A_D_F': 'a and d and f',
# 'A_D_G': 'a and d and g',
# 'A_E': 'a and e',
# 'A_E_F': 'a and e and f',
# 'A_E_G': 'a and e and g',
# 'A_F': 'a and f',
# 'A_G': 'a and g'
The function takes the given dictionaries and gets their keys and values, which is done by map(dict.keys, dictionaries))
and map(dict.values, dictionaries))
. The results of the first call
list(it.product(*map(dict.keys, [dict1,dict2])))
# [('A', 'C'), ('A', 'E'), ('A', 'B'), ('A', 'D')]
The tuples insides this list are then forced to your desired structure with join
(and again an map call to do this for every element):
"_".join(('A', 'C'))
# 'A_C'
list(map("_".join, it.product(*map(dict.keys, [dict1,dict2]))))
# ['A_C', 'A_E', 'A_B', 'A_D']
Finally the two resulting lists are transformed to tuples of (keys, values)
with the call of zip
and handed to the dictionary creation.
New contributor
I created a (not so nice) function to do your task with arbitrary number of dictionaries.
(Explanation below)
import itertools as it
dict1 =
"A": "a"
dict2 =
"B": "b",
"C": "c",
"D": "d",
"E": "e"
dict3 =
"F": "f",
"G": "g"
def custom_dict_product(dictionaries):
return dict(zip(map("_".join, it.product(*map(dict.keys, dictionaries))),
map(" and ".join, it.product(*map(dict.values, dictionaries)))))
result = custom_dict_product([dict1,dict2])
result.update(custom_dict_product([dict1,dict3]))
result.update(custom_dict_product([dict1,dict2,dict3]))
result
#'A_B': 'a and b',
# 'A_B_F': 'a and b and f',
# 'A_B_G': 'a and b and g',
# 'A_C': 'a and c',
# 'A_C_F': 'a and c and f',
# 'A_C_G': 'a and c and g',
# 'A_D': 'a and d',
# 'A_D_F': 'a and d and f',
# 'A_D_G': 'a and d and g',
# 'A_E': 'a and e',
# 'A_E_F': 'a and e and f',
# 'A_E_G': 'a and e and g',
# 'A_F': 'a and f',
# 'A_G': 'a and g'
The function takes the given dictionaries and gets their keys and values, which is done by map(dict.keys, dictionaries))
and map(dict.values, dictionaries))
. The results of the first call
list(it.product(*map(dict.keys, [dict1,dict2])))
# [('A', 'C'), ('A', 'E'), ('A', 'B'), ('A', 'D')]
The tuples insides this list are then forced to your desired structure with join
(and again an map call to do this for every element):
"_".join(('A', 'C'))
# 'A_C'
list(map("_".join, it.product(*map(dict.keys, [dict1,dict2]))))
# ['A_C', 'A_E', 'A_B', 'A_D']
Finally the two resulting lists are transformed to tuples of (keys, values)
with the call of zip
and handed to the dictionary creation.
New contributor
edited 7 hours ago
New contributor
answered 7 hours ago
Sparky05Sparky05
985
985
New contributor
New contributor
add a comment |
add a comment |
Here a dirty, but working, solution that makes use of itertools
from itertools import product, combinations
# create a list and sum dict to be used later
t = [dict1, dict2, dict3]
k =
for d in t:
k.update(d)
# iterate over "i" order of combinations ("dict1_X" or "dict1_X_Y") and
# the cartesian product of keys for each combination
results =
for i in range(2, 4):
a = [
[
results.update("_".join(y): " and ".join([k[j] for j in y]))
for y in product(*x)
]
for x in combinations(t, i)
if dict1 in x
]
results
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
New contributor
add a comment |
Here a dirty, but working, solution that makes use of itertools
from itertools import product, combinations
# create a list and sum dict to be used later
t = [dict1, dict2, dict3]
k =
for d in t:
k.update(d)
# iterate over "i" order of combinations ("dict1_X" or "dict1_X_Y") and
# the cartesian product of keys for each combination
results =
for i in range(2, 4):
a = [
[
results.update("_".join(y): " and ".join([k[j] for j in y]))
for y in product(*x)
]
for x in combinations(t, i)
if dict1 in x
]
results
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
New contributor
add a comment |
Here a dirty, but working, solution that makes use of itertools
from itertools import product, combinations
# create a list and sum dict to be used later
t = [dict1, dict2, dict3]
k =
for d in t:
k.update(d)
# iterate over "i" order of combinations ("dict1_X" or "dict1_X_Y") and
# the cartesian product of keys for each combination
results =
for i in range(2, 4):
a = [
[
results.update("_".join(y): " and ".join([k[j] for j in y]))
for y in product(*x)
]
for x in combinations(t, i)
if dict1 in x
]
results
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
New contributor
Here a dirty, but working, solution that makes use of itertools
from itertools import product, combinations
# create a list and sum dict to be used later
t = [dict1, dict2, dict3]
k =
for d in t:
k.update(d)
# iterate over "i" order of combinations ("dict1_X" or "dict1_X_Y") and
# the cartesian product of keys for each combination
results =
for i in range(2, 4):
a = [
[
results.update("_".join(y): " and ".join([k[j] for j in y]))
for y in product(*x)
]
for x in combinations(t, i)
if dict1 in x
]
results
Output:
'A_B': 'a and b',
'A_B_F': 'a and b and f',
'A_B_G': 'a and b and g',
'A_C': 'a and c',
'A_C_F': 'a and c and f',
'A_C_G': 'a and c and g',
'A_D': 'a and d',
'A_D_F': 'a and d and f',
'A_D_G': 'a and d and g',
'A_E': 'a and e',
'A_E_F': 'a and e and f',
'A_E_G': 'a and e and g',
'A_F': 'a and f',
'A_G': 'a and g'
New contributor
edited 5 hours ago
New contributor
answered 6 hours ago
Lante DellarovereLante Dellarovere
1616
1616
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55636895%2fcompute-the-product-of-3-dictionaries-and-concatenate-keys-and-values%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown