Why is the change of basis formula counter-intuitive? [See details] Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Change of basis = similarity?Change of Basis vs. Linear TransformationMatrices for change of basis linear transformationsConfusion about change of basis matrixIntuitive understanding of the $BAB^-1$ formula for changing basis in linear transformations.Standard Basis and Change of Basis MatrixStandard matrix linear transformation - change of basisHard change of basis/ linear transformation problemChange of basis difference between linear and bilinear transformationChange of basis of the kernel of a rectangular matrix

What does the writing on Poe's helmet say?

Why is it faster to reheat something than it is to cook it?

The Nth Gryphon Number

What does Turing mean by this statement?

Is multiple magic items in one inherently imbalanced?

What are the main differences between the original Stargate SG-1 and the Final Cut edition?

Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?

White walkers, cemeteries and wights

How does light 'choose' between wave and particle behaviour?

Moving a wrapfig vertically to encroach partially on a subsection title

Where is the Next Backup Size entry on iOS 12?

In musical terms, what properties are varied by the human voice to produce different words / syllables?

Tannaka duality for semisimple groups

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

Relating to the President and obstruction, were Mueller's conclusions preordained?

Resize vertical bars (absolute-value symbols)

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

What is the "studentd" process?

Can two people see the same photon?

Was Kant an Intuitionist about mathematical objects?

Sally's older brother

Is it dangerous to install hacking tools on my private linux machine?

What order were files/directories output in dir?

One-one communication



Why is the change of basis formula counter-intuitive? [See details]



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Change of basis = similarity?Change of Basis vs. Linear TransformationMatrices for change of basis linear transformationsConfusion about change of basis matrixIntuitive understanding of the $BAB^-1$ formula for changing basis in linear transformations.Standard Basis and Change of Basis MatrixStandard matrix linear transformation - change of basisHard change of basis/ linear transformation problemChange of basis difference between linear and bilinear transformationChange of basis of the kernel of a rectangular matrix










2












$begingroup$


The formula of change of basis $[T]_B' = P_B'leftarrow B[T]_BP_Bleftarrow B'$.



I don't understand why you need $P_Bleftarrow B'$? It seems to me that if you have the transformation expressed in $B$ already with $[T]_B$ you just need to translate to $B'$ by using $P_B'leftarrow B$ to get $[T]_B'$ rendering $P_Bleftarrow B'$ as useless. Can someone explain what I am missing here?










share|cite|improve this question











$endgroup$











  • $begingroup$
    @littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
    $endgroup$
    – Dr.Stone
    5 hours ago
















2












$begingroup$


The formula of change of basis $[T]_B' = P_B'leftarrow B[T]_BP_Bleftarrow B'$.



I don't understand why you need $P_Bleftarrow B'$? It seems to me that if you have the transformation expressed in $B$ already with $[T]_B$ you just need to translate to $B'$ by using $P_B'leftarrow B$ to get $[T]_B'$ rendering $P_Bleftarrow B'$ as useless. Can someone explain what I am missing here?










share|cite|improve this question











$endgroup$











  • $begingroup$
    @littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
    $endgroup$
    – Dr.Stone
    5 hours ago














2












2








2





$begingroup$


The formula of change of basis $[T]_B' = P_B'leftarrow B[T]_BP_Bleftarrow B'$.



I don't understand why you need $P_Bleftarrow B'$? It seems to me that if you have the transformation expressed in $B$ already with $[T]_B$ you just need to translate to $B'$ by using $P_B'leftarrow B$ to get $[T]_B'$ rendering $P_Bleftarrow B'$ as useless. Can someone explain what I am missing here?










share|cite|improve this question











$endgroup$




The formula of change of basis $[T]_B' = P_B'leftarrow B[T]_BP_Bleftarrow B'$.



I don't understand why you need $P_Bleftarrow B'$? It seems to me that if you have the transformation expressed in $B$ already with $[T]_B$ you just need to translate to $B'$ by using $P_B'leftarrow B$ to get $[T]_B'$ rendering $P_Bleftarrow B'$ as useless. Can someone explain what I am missing here?







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Carmeister

2,8792924




2,8792924










asked 6 hours ago









Dr.StoneDr.Stone

676




676











  • $begingroup$
    @littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
    $endgroup$
    – Dr.Stone
    5 hours ago

















  • $begingroup$
    @littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
    $endgroup$
    – Dr.Stone
    5 hours ago
















$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
5 hours ago





$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
5 hours ago











2 Answers
2






active

oldest

votes


















3












$begingroup$

Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Write $B=e_1,...,e_n, B' =e_1',...,e_n'$



    If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



    So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195162%2fwhy-is-the-change-of-basis-formula-counter-intuitive-see-details%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.






          share|cite|improve this answer









          $endgroup$



          Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 5 hours ago









          littleOlittleO

          30.6k649111




          30.6k649111





















              2












              $begingroup$

              Write $B=e_1,...,e_n, B' =e_1',...,e_n'$



              If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



              So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Write $B=e_1,...,e_n, B' =e_1',...,e_n'$



                If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



                So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Write $B=e_1,...,e_n, B' =e_1',...,e_n'$



                  If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



                  So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula






                  share|cite|improve this answer









                  $endgroup$



                  Write $B=e_1,...,e_n, B' =e_1',...,e_n'$



                  If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



                  So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 6 hours ago









                  MaxMax

                  16.6k11144




                  16.6k11144



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195162%2fwhy-is-the-change-of-basis-formula-counter-intuitive-see-details%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                      Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                      Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр