Gibbs free energy in standard state vs. equilibriumUnit of the equilibrium constant: contradiction of Bridgman's theorem?What kind of equilibrium constant we use for Gibbs free energy and Van't Hoff equation?Units for dissociation constant and relationship to Gibbs Free EnergySpontaneous Reaction and Gibbs Free EnergyUsing equilibrium constant in gibbs equationIs the Gibbs standard free energy always constant?reconciling free energy equationsUnderstanding Gibbs free energy and enthalpyWhy does the standard enthalpy of formation diverge so far from the standard Gibbs free energy of formation for some substances?Is the equilibrium constant in the expression based on pressure or concentration?How to derive the relation between gibbs energy and equilibrium constant?

Drawing a topological "handle" with Tikz

How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?

Folder comparison

Two-sided logarithm inequality

Bob has never been a M before

Have I saved too much for retirement so far?

anything or something to eat

Some numbers are more equivalent than others

Is it possible to have a strip of cold climate in the middle of a planet?

Is it possible to use .desktop files to open local pdf files on specific pages with a browser?

MAXDOP Settings for SQL Server 2014

Diode in opposite direction?

Find last 3 digits of this monster number

How do I implement a file system driver driver in Linux?

THT: What is a squared annular “ring”?

On a tidally locked planet, would time be quantized?

What is this type of notehead called?

How must one send away the mother bird?

Greco-Roman egalitarianism

Has Darkwing Duck ever met Scrooge McDuck?

Is XSS in canonical link possible?

Will adding a BY-SA image to a blog post make the entire post BY-SA?

How will losing mobility of one hand affect my career as a programmer?

Open a doc from terminal, but not by its name



Gibbs free energy in standard state vs. equilibrium


Unit of the equilibrium constant: contradiction of Bridgman's theorem?What kind of equilibrium constant we use for Gibbs free energy and Van't Hoff equation?Units for dissociation constant and relationship to Gibbs Free EnergySpontaneous Reaction and Gibbs Free EnergyUsing equilibrium constant in gibbs equationIs the Gibbs standard free energy always constant?reconciling free energy equationsUnderstanding Gibbs free energy and enthalpyWhy does the standard enthalpy of formation diverge so far from the standard Gibbs free energy of formation for some substances?Is the equilibrium constant in the expression based on pressure or concentration?How to derive the relation between gibbs energy and equilibrium constant?













1












$begingroup$


I have a problem with the definition of the standard Gibbs energy and its connection to the equilibrium constants.



I think, that I've basically understood what the different equation mean but there is one thing, I'm unable to understand:



On the one hand:



One may describe a chemical reaction with $Delta G=Delta G^circ + RTlnQ$. In equilibrium $Delta G = 0$ and the equation reads $Delta G^circ = -RT lnK$.



On the other hand:



The definition of standard state is very clear: pressure = 1 bar and all reactants and products must have activity = 1.



If I consider these two aspects separately, everything seems to be fine. But these two concepts have to be valid at the same time, what leads to $Delta G^circ = 0$ (always), since $K=1$ (all activities are per definition = 1).



Therefore, $Delta G^circ$ would be always zero. I know that this isn't true, but I don't understand why.



Can anyone explain this to me?



Thanks!










share|improve this question







New contributor




user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    "since $K=1$" not necessarily true; it is $Q = 1$. Nobody said that at standard state the system must be in equilibrium.
    $endgroup$
    – orthocresol
    9 hours ago











  • $begingroup$
    ok, but the formulae say: At standard state $Delta G^circ = -RTlnK$ and K is the ratio of the activities of reactants and products in equilibrium, due to the standard state definition K = 1, because it says: each $a=1$. Doesn't this definition disagree with your comment? I find this all really confusing.
    $endgroup$
    – user76122
    8 hours ago










  • $begingroup$
    I find that terribly confusing and wrong if it claims $K = 1$.
    $endgroup$
    – orthocresol
    8 hours ago










  • $begingroup$
    I know it is wrong, but I don't get why :( Did you understand my problem, that is the pure formula seems to contradict the general understanding...
    $endgroup$
    – user76122
    7 hours ago










  • $begingroup$
    @user76122 Orthocresol is right. Your definition of standard state in the context of $Delta G^0$ is wrong. The standard state of a pure material entails that its activity is 1. But in the context of the equation for $Delta G$ you deal conceptually with mixtures and thus not pure materials. If you follow my derivation of the formula (see here) you can see which assumptions go into $Delta G^0$. It is true that it is defined for standard pressure/concentration, but activity being equal to 1 is not presumed.
    $endgroup$
    – Philipp
    6 hours ago
















1












$begingroup$


I have a problem with the definition of the standard Gibbs energy and its connection to the equilibrium constants.



I think, that I've basically understood what the different equation mean but there is one thing, I'm unable to understand:



On the one hand:



One may describe a chemical reaction with $Delta G=Delta G^circ + RTlnQ$. In equilibrium $Delta G = 0$ and the equation reads $Delta G^circ = -RT lnK$.



On the other hand:



The definition of standard state is very clear: pressure = 1 bar and all reactants and products must have activity = 1.



If I consider these two aspects separately, everything seems to be fine. But these two concepts have to be valid at the same time, what leads to $Delta G^circ = 0$ (always), since $K=1$ (all activities are per definition = 1).



Therefore, $Delta G^circ$ would be always zero. I know that this isn't true, but I don't understand why.



Can anyone explain this to me?



Thanks!










share|improve this question







New contributor




user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    "since $K=1$" not necessarily true; it is $Q = 1$. Nobody said that at standard state the system must be in equilibrium.
    $endgroup$
    – orthocresol
    9 hours ago











  • $begingroup$
    ok, but the formulae say: At standard state $Delta G^circ = -RTlnK$ and K is the ratio of the activities of reactants and products in equilibrium, due to the standard state definition K = 1, because it says: each $a=1$. Doesn't this definition disagree with your comment? I find this all really confusing.
    $endgroup$
    – user76122
    8 hours ago










  • $begingroup$
    I find that terribly confusing and wrong if it claims $K = 1$.
    $endgroup$
    – orthocresol
    8 hours ago










  • $begingroup$
    I know it is wrong, but I don't get why :( Did you understand my problem, that is the pure formula seems to contradict the general understanding...
    $endgroup$
    – user76122
    7 hours ago










  • $begingroup$
    @user76122 Orthocresol is right. Your definition of standard state in the context of $Delta G^0$ is wrong. The standard state of a pure material entails that its activity is 1. But in the context of the equation for $Delta G$ you deal conceptually with mixtures and thus not pure materials. If you follow my derivation of the formula (see here) you can see which assumptions go into $Delta G^0$. It is true that it is defined for standard pressure/concentration, but activity being equal to 1 is not presumed.
    $endgroup$
    – Philipp
    6 hours ago














1












1








1





$begingroup$


I have a problem with the definition of the standard Gibbs energy and its connection to the equilibrium constants.



I think, that I've basically understood what the different equation mean but there is one thing, I'm unable to understand:



On the one hand:



One may describe a chemical reaction with $Delta G=Delta G^circ + RTlnQ$. In equilibrium $Delta G = 0$ and the equation reads $Delta G^circ = -RT lnK$.



On the other hand:



The definition of standard state is very clear: pressure = 1 bar and all reactants and products must have activity = 1.



If I consider these two aspects separately, everything seems to be fine. But these two concepts have to be valid at the same time, what leads to $Delta G^circ = 0$ (always), since $K=1$ (all activities are per definition = 1).



Therefore, $Delta G^circ$ would be always zero. I know that this isn't true, but I don't understand why.



Can anyone explain this to me?



Thanks!










share|improve this question







New contributor




user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I have a problem with the definition of the standard Gibbs energy and its connection to the equilibrium constants.



I think, that I've basically understood what the different equation mean but there is one thing, I'm unable to understand:



On the one hand:



One may describe a chemical reaction with $Delta G=Delta G^circ + RTlnQ$. In equilibrium $Delta G = 0$ and the equation reads $Delta G^circ = -RT lnK$.



On the other hand:



The definition of standard state is very clear: pressure = 1 bar and all reactants and products must have activity = 1.



If I consider these two aspects separately, everything seems to be fine. But these two concepts have to be valid at the same time, what leads to $Delta G^circ = 0$ (always), since $K=1$ (all activities are per definition = 1).



Therefore, $Delta G^circ$ would be always zero. I know that this isn't true, but I don't understand why.



Can anyone explain this to me?



Thanks!







physical-chemistry reaction-mechanism equilibrium free-energy






share|improve this question







New contributor




user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 9 hours ago









user76122user76122

91




91




New contributor




user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






user76122 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    "since $K=1$" not necessarily true; it is $Q = 1$. Nobody said that at standard state the system must be in equilibrium.
    $endgroup$
    – orthocresol
    9 hours ago











  • $begingroup$
    ok, but the formulae say: At standard state $Delta G^circ = -RTlnK$ and K is the ratio of the activities of reactants and products in equilibrium, due to the standard state definition K = 1, because it says: each $a=1$. Doesn't this definition disagree with your comment? I find this all really confusing.
    $endgroup$
    – user76122
    8 hours ago










  • $begingroup$
    I find that terribly confusing and wrong if it claims $K = 1$.
    $endgroup$
    – orthocresol
    8 hours ago










  • $begingroup$
    I know it is wrong, but I don't get why :( Did you understand my problem, that is the pure formula seems to contradict the general understanding...
    $endgroup$
    – user76122
    7 hours ago










  • $begingroup$
    @user76122 Orthocresol is right. Your definition of standard state in the context of $Delta G^0$ is wrong. The standard state of a pure material entails that its activity is 1. But in the context of the equation for $Delta G$ you deal conceptually with mixtures and thus not pure materials. If you follow my derivation of the formula (see here) you can see which assumptions go into $Delta G^0$. It is true that it is defined for standard pressure/concentration, but activity being equal to 1 is not presumed.
    $endgroup$
    – Philipp
    6 hours ago













  • 2




    $begingroup$
    "since $K=1$" not necessarily true; it is $Q = 1$. Nobody said that at standard state the system must be in equilibrium.
    $endgroup$
    – orthocresol
    9 hours ago











  • $begingroup$
    ok, but the formulae say: At standard state $Delta G^circ = -RTlnK$ and K is the ratio of the activities of reactants and products in equilibrium, due to the standard state definition K = 1, because it says: each $a=1$. Doesn't this definition disagree with your comment? I find this all really confusing.
    $endgroup$
    – user76122
    8 hours ago










  • $begingroup$
    I find that terribly confusing and wrong if it claims $K = 1$.
    $endgroup$
    – orthocresol
    8 hours ago










  • $begingroup$
    I know it is wrong, but I don't get why :( Did you understand my problem, that is the pure formula seems to contradict the general understanding...
    $endgroup$
    – user76122
    7 hours ago










  • $begingroup$
    @user76122 Orthocresol is right. Your definition of standard state in the context of $Delta G^0$ is wrong. The standard state of a pure material entails that its activity is 1. But in the context of the equation for $Delta G$ you deal conceptually with mixtures and thus not pure materials. If you follow my derivation of the formula (see here) you can see which assumptions go into $Delta G^0$. It is true that it is defined for standard pressure/concentration, but activity being equal to 1 is not presumed.
    $endgroup$
    – Philipp
    6 hours ago








2




2




$begingroup$
"since $K=1$" not necessarily true; it is $Q = 1$. Nobody said that at standard state the system must be in equilibrium.
$endgroup$
– orthocresol
9 hours ago





$begingroup$
"since $K=1$" not necessarily true; it is $Q = 1$. Nobody said that at standard state the system must be in equilibrium.
$endgroup$
– orthocresol
9 hours ago













$begingroup$
ok, but the formulae say: At standard state $Delta G^circ = -RTlnK$ and K is the ratio of the activities of reactants and products in equilibrium, due to the standard state definition K = 1, because it says: each $a=1$. Doesn't this definition disagree with your comment? I find this all really confusing.
$endgroup$
– user76122
8 hours ago




$begingroup$
ok, but the formulae say: At standard state $Delta G^circ = -RTlnK$ and K is the ratio of the activities of reactants and products in equilibrium, due to the standard state definition K = 1, because it says: each $a=1$. Doesn't this definition disagree with your comment? I find this all really confusing.
$endgroup$
– user76122
8 hours ago












$begingroup$
I find that terribly confusing and wrong if it claims $K = 1$.
$endgroup$
– orthocresol
8 hours ago




$begingroup$
I find that terribly confusing and wrong if it claims $K = 1$.
$endgroup$
– orthocresol
8 hours ago












$begingroup$
I know it is wrong, but I don't get why :( Did you understand my problem, that is the pure formula seems to contradict the general understanding...
$endgroup$
– user76122
7 hours ago




$begingroup$
I know it is wrong, but I don't get why :( Did you understand my problem, that is the pure formula seems to contradict the general understanding...
$endgroup$
– user76122
7 hours ago












$begingroup$
@user76122 Orthocresol is right. Your definition of standard state in the context of $Delta G^0$ is wrong. The standard state of a pure material entails that its activity is 1. But in the context of the equation for $Delta G$ you deal conceptually with mixtures and thus not pure materials. If you follow my derivation of the formula (see here) you can see which assumptions go into $Delta G^0$. It is true that it is defined for standard pressure/concentration, but activity being equal to 1 is not presumed.
$endgroup$
– Philipp
6 hours ago





$begingroup$
@user76122 Orthocresol is right. Your definition of standard state in the context of $Delta G^0$ is wrong. The standard state of a pure material entails that its activity is 1. But in the context of the equation for $Delta G$ you deal conceptually with mixtures and thus not pure materials. If you follow my derivation of the formula (see here) you can see which assumptions go into $Delta G^0$. It is true that it is defined for standard pressure/concentration, but activity being equal to 1 is not presumed.
$endgroup$
– Philipp
6 hours ago











2 Answers
2






active

oldest

votes


















4












$begingroup$

As explained in the comments, the standard state conditions lead to $Q=1$ and therefore $$Delta G=Delta G^circ+ RTln1=Delta G^circ$$ On the other hand at equilibrium $Q=K$ and so $$Delta G=Delta G^circ + RTlnK$$ This of course leads to $Delta G^circ = -RTlnK$ since at equilibrium $Delta G=0$.



So you might want to think of it as three statements:



  1. For the conversion of reactants to products in their standard states $Q=1$

  2. At equilibrium $Delta G=0$

  3. At equilibrium $Q=K$

The first statement is consistent with the definition of standard states.
The second statement follows from combination of the first and second laws of thermodynamics.
The third statement is a definition of $K$.






share|improve this answer









$endgroup$




















    1












    $begingroup$

    What you enter into $K$ are not the activities of the pure reactants and pure products at standard state (if you did then, yes, $K$ would be 1). Rather, it is their activities at equilibrium (raised, of course, to the power of their respective stochiometric coefficients). And, at equilibrium, these activities are generally not equal to one.






    share|improve this answer











    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "431"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      user76122 is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111475%2fgibbs-free-energy-in-standard-state-vs-equilibrium%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      As explained in the comments, the standard state conditions lead to $Q=1$ and therefore $$Delta G=Delta G^circ+ RTln1=Delta G^circ$$ On the other hand at equilibrium $Q=K$ and so $$Delta G=Delta G^circ + RTlnK$$ This of course leads to $Delta G^circ = -RTlnK$ since at equilibrium $Delta G=0$.



      So you might want to think of it as three statements:



      1. For the conversion of reactants to products in their standard states $Q=1$

      2. At equilibrium $Delta G=0$

      3. At equilibrium $Q=K$

      The first statement is consistent with the definition of standard states.
      The second statement follows from combination of the first and second laws of thermodynamics.
      The third statement is a definition of $K$.






      share|improve this answer









      $endgroup$

















        4












        $begingroup$

        As explained in the comments, the standard state conditions lead to $Q=1$ and therefore $$Delta G=Delta G^circ+ RTln1=Delta G^circ$$ On the other hand at equilibrium $Q=K$ and so $$Delta G=Delta G^circ + RTlnK$$ This of course leads to $Delta G^circ = -RTlnK$ since at equilibrium $Delta G=0$.



        So you might want to think of it as three statements:



        1. For the conversion of reactants to products in their standard states $Q=1$

        2. At equilibrium $Delta G=0$

        3. At equilibrium $Q=K$

        The first statement is consistent with the definition of standard states.
        The second statement follows from combination of the first and second laws of thermodynamics.
        The third statement is a definition of $K$.






        share|improve this answer









        $endgroup$















          4












          4








          4





          $begingroup$

          As explained in the comments, the standard state conditions lead to $Q=1$ and therefore $$Delta G=Delta G^circ+ RTln1=Delta G^circ$$ On the other hand at equilibrium $Q=K$ and so $$Delta G=Delta G^circ + RTlnK$$ This of course leads to $Delta G^circ = -RTlnK$ since at equilibrium $Delta G=0$.



          So you might want to think of it as three statements:



          1. For the conversion of reactants to products in their standard states $Q=1$

          2. At equilibrium $Delta G=0$

          3. At equilibrium $Q=K$

          The first statement is consistent with the definition of standard states.
          The second statement follows from combination of the first and second laws of thermodynamics.
          The third statement is a definition of $K$.






          share|improve this answer









          $endgroup$



          As explained in the comments, the standard state conditions lead to $Q=1$ and therefore $$Delta G=Delta G^circ+ RTln1=Delta G^circ$$ On the other hand at equilibrium $Q=K$ and so $$Delta G=Delta G^circ + RTlnK$$ This of course leads to $Delta G^circ = -RTlnK$ since at equilibrium $Delta G=0$.



          So you might want to think of it as three statements:



          1. For the conversion of reactants to products in their standard states $Q=1$

          2. At equilibrium $Delta G=0$

          3. At equilibrium $Q=K$

          The first statement is consistent with the definition of standard states.
          The second statement follows from combination of the first and second laws of thermodynamics.
          The third statement is a definition of $K$.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 5 hours ago









          Night WriterNight Writer

          2,453223




          2,453223





















              1












              $begingroup$

              What you enter into $K$ are not the activities of the pure reactants and pure products at standard state (if you did then, yes, $K$ would be 1). Rather, it is their activities at equilibrium (raised, of course, to the power of their respective stochiometric coefficients). And, at equilibrium, these activities are generally not equal to one.






              share|improve this answer











              $endgroup$

















                1












                $begingroup$

                What you enter into $K$ are not the activities of the pure reactants and pure products at standard state (if you did then, yes, $K$ would be 1). Rather, it is their activities at equilibrium (raised, of course, to the power of their respective stochiometric coefficients). And, at equilibrium, these activities are generally not equal to one.






                share|improve this answer











                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  What you enter into $K$ are not the activities of the pure reactants and pure products at standard state (if you did then, yes, $K$ would be 1). Rather, it is their activities at equilibrium (raised, of course, to the power of their respective stochiometric coefficients). And, at equilibrium, these activities are generally not equal to one.






                  share|improve this answer











                  $endgroup$



                  What you enter into $K$ are not the activities of the pure reactants and pure products at standard state (if you did then, yes, $K$ would be 1). Rather, it is their activities at equilibrium (raised, of course, to the power of their respective stochiometric coefficients). And, at equilibrium, these activities are generally not equal to one.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 4 hours ago

























                  answered 4 hours ago









                  theoristtheorist

                  2288




                  2288




















                      user76122 is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      user76122 is a new contributor. Be nice, and check out our Code of Conduct.












                      user76122 is a new contributor. Be nice, and check out our Code of Conduct.











                      user76122 is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Chemistry Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111475%2fgibbs-free-energy-in-standard-state-vs-equilibrium%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                      Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                      Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe