Transformation of random variables and joint distributionsPlotting confidence intervalsWhat is the PDF of a variable where a parameter is itself a random variable?NProbability not reliability analysis?Mathematica function to calculate equivalent NormalDistribution from a WeibullDistributionPDF for square of Rician random variable?Convolve discrete random variables efficientlyDistribution of Function of Random Sum of Random VariablesSketching Normal Probability Distributions GraphsConstruct Distribution Histogram From Random VariableNormal distribution plot construction

What is the gram­mat­i­cal term for “‑ed” words like these?

Have I saved too much for retirement so far?

List of people who lose a child in תנ"ך

Is there a conventional notation or name for the slip angle?

Should I stop contributing to retirement accounts?

Hot bath for aluminium engine block and heads

Is it possible to use .desktop files to open local pdf files on specific pages with a browser?

What does this horizontal bar at the first measure mean?

How to color a curve

Can the Supreme Court overturn an impeachment?

How do ground effect vehicles perform turns?

Proving a function is onto where f(x)=|x|.

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

A Permanent Norse Presence in America

Do Legal Documents Require Signing In Standard Pen Colors?

About a little hole in Z'ha'dum

How do I extrude a face to a single vertex

Sampling Theorem and reconstruction

Can someone explain how this makes sense electrically?

Some numbers are more equivalent than others

Is there a word to describe the feeling of being transfixed out of horror?

Do the concepts of IP address and network interface not belong to the same layer?

Drawing ramified coverings with tikz

Did arcade monitors have same pixel aspect ratio as TV sets?



Transformation of random variables and joint distributions


Plotting confidence intervalsWhat is the PDF of a variable where a parameter is itself a random variable?NProbability not reliability analysis?Mathematica function to calculate equivalent NormalDistribution from a WeibullDistributionPDF for square of Rician random variable?Convolve discrete random variables efficientlyDistribution of Function of Random Sum of Random VariablesSketching Normal Probability Distributions GraphsConstruct Distribution Histogram From Random VariableNormal distribution plot construction













3












$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    8 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    7 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    3 hours ago















3












$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    8 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    7 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    3 hours ago













3












3








3





$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments







probability-or-statistics






share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 3 hours ago









mjw

9779




9779






New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 8 hours ago









Andrea2810Andrea2810

162




162




New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    8 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    7 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    3 hours ago












  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    8 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    7 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    3 hours ago







4




4




$begingroup$
What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
$endgroup$
– JimB
8 hours ago




$begingroup$
What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
$endgroup$
– JimB
8 hours ago












$begingroup$
@JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
$endgroup$
– Andrea2810
7 hours ago





$begingroup$
@JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
$endgroup$
– Andrea2810
7 hours ago













$begingroup$
You need to "index" the variable y or else Mathematica thinks it is a single variable.
$endgroup$
– JimB
3 hours ago




$begingroup$
You need to "index" the variable y or else Mathematica thinks it is a single variable.
$endgroup$
– JimB
3 hours ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 hours ago











  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    10 mins ago


















0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    4 hours ago


















0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    4 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    4 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    3 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    3 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193876%2ftransformation-of-random-variables-and-joint-distributions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 hours ago











  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    10 mins ago















4












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 hours ago











  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    10 mins ago













4












4








4





$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$



I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$







share|improve this answer














share|improve this answer



share|improve this answer








edited 2 hours ago

























answered 3 hours ago









JimBJimB

18k12863




18k12863











  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 hours ago











  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    10 mins ago
















  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 hours ago











  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    10 mins ago















$begingroup$
Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
$endgroup$
– mjw
2 hours ago





$begingroup$
Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
$endgroup$
– mjw
2 hours ago













$begingroup$
@mjw Good. Answers should always be scrutinized and challenged if desired.
$endgroup$
– JimB
2 hours ago





$begingroup$
@mjw Good. Answers should always be scrutinized and challenged if desired.
$endgroup$
– JimB
2 hours ago













$begingroup$
Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
$endgroup$
– mjw
10 mins ago




$begingroup$
Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
$endgroup$
– mjw
10 mins ago











0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    4 hours ago















0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    4 hours ago













0












0








0





$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$



just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.







share|improve this answer














share|improve this answer



share|improve this answer








edited 3 hours ago

























answered 4 hours ago









XminerXminer

30918




30918











  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    4 hours ago
















  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    4 hours ago















$begingroup$
I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
$endgroup$
– mjw
4 hours ago




$begingroup$
I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
$endgroup$
– mjw
4 hours ago












$begingroup$
I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
$endgroup$
– mjw
4 hours ago




$begingroup$
I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
$endgroup$
– mjw
4 hours ago












$begingroup$
Exactly, the two variables are not independent unfortunately
$endgroup$
– Andrea2810
4 hours ago




$begingroup$
Exactly, the two variables are not independent unfortunately
$endgroup$
– Andrea2810
4 hours ago











0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    4 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    4 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    3 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    3 hours ago
















0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    4 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    4 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    3 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    3 hours ago














0












0








0





$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$



Here is the distribution of $x=overliney$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]






share|improve this answer














share|improve this answer



share|improve this answer








edited 9 mins ago

























answered 5 hours ago









mjwmjw

9779




9779











  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    4 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    4 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    3 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    3 hours ago

















  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    4 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    4 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    4 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    3 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    3 hours ago
















$begingroup$
I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
$endgroup$
– Andrea2810
4 hours ago





$begingroup$
I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
$endgroup$
– Andrea2810
4 hours ago













$begingroup$
Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
$endgroup$
– mjw
4 hours ago





$begingroup$
Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
$endgroup$
– mjw
4 hours ago













$begingroup$
Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
$endgroup$
– mjw
4 hours ago




$begingroup$
Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
$endgroup$
– mjw
4 hours ago












$begingroup$
Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
$endgroup$
– Andrea2810
3 hours ago




$begingroup$
Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
$endgroup$
– Andrea2810
3 hours ago












$begingroup$
a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
$endgroup$
– mjw
3 hours ago





$begingroup$
a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
$endgroup$
– mjw
3 hours ago











Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.












Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.











Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193876%2ftransformation-of-random-variables-and-joint-distributions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр