How to define limit operations in general topological spaces? Are nets able to do this?is a net stronger than a transfinite sequence for characterizing topology?Permitted value of epsilon in Discrete Metric SpaceWhy are topological spaces interesting to study?Define $f(y)=d(x_0,y)$, prove that $f$ is continuous.Finite point set has limit points for general topological spaces?Is the uniform limit of continuous functions continuous for topological spaces?Can we define the concept of limit without a topology?Equivalent definition of limit of a function (Reference request)Can limits be defined in a more algebraic way, instead of using the completely analytic $delta$-$epsilon$ definition?Is Wikipedia correct about bounded sets?

If "dar" means "to give", what does "daros" mean?

What does "Four-F." mean?

How are passwords stolen from companies if they only store hashes?

Four married couples attend a party. Each person shakes hands with every other person, except their own spouse, exactly once. How many handshakes?

Have the tides ever turned twice on any open problem?

Knife as defense against stray dogs

Is this an example of a Neapolitan chord?

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

Do US professors/group leaders only get a salary, but no group budget?

I got the following comment from a reputed math journal. What does it mean?

How could an airship be repaired midflight?

Why is indicated airspeed rather than ground speed used during the takeoff roll?

What does "^L" mean in C?

What are substitutions for coconut in curry?

How to get the n-th line after a grepped one?

Asserting that Atheism and Theism are both faith based positions

Why is there so much iron?

Brake pads destroying wheels

Calculate the frequency of characters in a string

Print a physical multiplication table

What is the significance behind "40 days" that often appears in the Bible?

Geography in 3D perspective

Synchronized implementation of a bank account in Java

Recruiter wants very extensive technical details about all of my previous work



How to define limit operations in general topological spaces? Are nets able to do this?


is a net stronger than a transfinite sequence for characterizing topology?Permitted value of epsilon in Discrete Metric SpaceWhy are topological spaces interesting to study?Define $f(y)=d(x_0,y)$, prove that $f$ is continuous.Finite point set has limit points for general topological spaces?Is the uniform limit of continuous functions continuous for topological spaces?Can we define the concept of limit without a topology?Equivalent definition of limit of a function (Reference request)Can limits be defined in a more algebraic way, instead of using the completely analytic $delta$-$epsilon$ definition?Is Wikipedia correct about bounded sets?













4












$begingroup$


I was always under the impression that in order to take a limit, I need to have a metric defined on my underlying space.



For $f:mathbbRto mathbbR$,
$
lim_xto x_0f(x)=a
$

means that for all $epsilon >0 $ there exists a $delta(epsilon)>0$ such that $|f(x)-a|<epsilon$ whenever $0< |x-x_0|<delta$. The notion of a limit uses the underlying metric $|cdot|$ of $mathbbR$.



Is there a consistent way of dispensing with the metric and still define a limit operation in some topological space? Are nets able to do this?










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    I was always under the impression that in order to take a limit, I need to have a metric defined on my underlying space.



    For $f:mathbbRto mathbbR$,
    $
    lim_xto x_0f(x)=a
    $

    means that for all $epsilon >0 $ there exists a $delta(epsilon)>0$ such that $|f(x)-a|<epsilon$ whenever $0< |x-x_0|<delta$. The notion of a limit uses the underlying metric $|cdot|$ of $mathbbR$.



    Is there a consistent way of dispensing with the metric and still define a limit operation in some topological space? Are nets able to do this?










    share|cite|improve this question











    $endgroup$














      4












      4








      4


      1



      $begingroup$


      I was always under the impression that in order to take a limit, I need to have a metric defined on my underlying space.



      For $f:mathbbRto mathbbR$,
      $
      lim_xto x_0f(x)=a
      $

      means that for all $epsilon >0 $ there exists a $delta(epsilon)>0$ such that $|f(x)-a|<epsilon$ whenever $0< |x-x_0|<delta$. The notion of a limit uses the underlying metric $|cdot|$ of $mathbbR$.



      Is there a consistent way of dispensing with the metric and still define a limit operation in some topological space? Are nets able to do this?










      share|cite|improve this question











      $endgroup$




      I was always under the impression that in order to take a limit, I need to have a metric defined on my underlying space.



      For $f:mathbbRto mathbbR$,
      $
      lim_xto x_0f(x)=a
      $

      means that for all $epsilon >0 $ there exists a $delta(epsilon)>0$ such that $|f(x)-a|<epsilon$ whenever $0< |x-x_0|<delta$. The notion of a limit uses the underlying metric $|cdot|$ of $mathbbR$.



      Is there a consistent way of dispensing with the metric and still define a limit operation in some topological space? Are nets able to do this?







      real-analysis general-topology






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 10 hours ago









      YuiTo Cheng

      2,0532637




      2,0532637










      asked 13 hours ago









      EEEBEEEB

      52738




      52738




















          3 Answers
          3






          active

          oldest

          votes


















          6












          $begingroup$

          The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.



          Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.






          share|cite|improve this answer









          $endgroup$




















            6












            $begingroup$

            The notion of limit is well-defined for any topological space, even non-metric ones.



            Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.



            But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.






            share|cite|improve this answer











            $endgroup$








            • 3




              $begingroup$
              Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
              $endgroup$
              – chi
              6 hours ago










            • $begingroup$
              @chi Yes, thank you for this comment ! Indeed the precision can be usefull.
              $endgroup$
              – TheSilverDoe
              5 hours ago


















            4












            $begingroup$

            A net is a function from an directed set $(I, le)$ (say) to a space $X$.



            $f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.



            The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.



            I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.



            If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.






            share|cite|improve this answer











            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151413%2fhow-to-define-limit-operations-in-general-topological-spaces-are-nets-able-to-d%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6












              $begingroup$

              The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.



              Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.






              share|cite|improve this answer









              $endgroup$

















                6












                $begingroup$

                The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.



                Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.






                share|cite|improve this answer









                $endgroup$















                  6












                  6








                  6





                  $begingroup$

                  The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.



                  Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.






                  share|cite|improve this answer









                  $endgroup$



                  The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.



                  Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 11 hours ago









                  Kavi Rama MurthyKavi Rama Murthy

                  67.8k53067




                  67.8k53067





















                      6












                      $begingroup$

                      The notion of limit is well-defined for any topological space, even non-metric ones.



                      Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.



                      But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.






                      share|cite|improve this answer











                      $endgroup$








                      • 3




                        $begingroup$
                        Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
                        $endgroup$
                        – chi
                        6 hours ago










                      • $begingroup$
                        @chi Yes, thank you for this comment ! Indeed the precision can be usefull.
                        $endgroup$
                        – TheSilverDoe
                        5 hours ago















                      6












                      $begingroup$

                      The notion of limit is well-defined for any topological space, even non-metric ones.



                      Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.



                      But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.






                      share|cite|improve this answer











                      $endgroup$








                      • 3




                        $begingroup$
                        Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
                        $endgroup$
                        – chi
                        6 hours ago










                      • $begingroup$
                        @chi Yes, thank you for this comment ! Indeed the precision can be usefull.
                        $endgroup$
                        – TheSilverDoe
                        5 hours ago













                      6












                      6








                      6





                      $begingroup$

                      The notion of limit is well-defined for any topological space, even non-metric ones.



                      Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.



                      But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.






                      share|cite|improve this answer











                      $endgroup$



                      The notion of limit is well-defined for any topological space, even non-metric ones.



                      Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.



                      But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 10 hours ago









                      psmears

                      71149




                      71149










                      answered 11 hours ago









                      TheSilverDoeTheSilverDoe

                      4,037114




                      4,037114







                      • 3




                        $begingroup$
                        Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
                        $endgroup$
                        – chi
                        6 hours ago










                      • $begingroup$
                        @chi Yes, thank you for this comment ! Indeed the precision can be usefull.
                        $endgroup$
                        – TheSilverDoe
                        5 hours ago












                      • 3




                        $begingroup$
                        Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
                        $endgroup$
                        – chi
                        6 hours ago










                      • $begingroup$
                        @chi Yes, thank you for this comment ! Indeed the precision can be usefull.
                        $endgroup$
                        – TheSilverDoe
                        5 hours ago







                      3




                      3




                      $begingroup$
                      Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
                      $endgroup$
                      – chi
                      6 hours ago




                      $begingroup$
                      Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
                      $endgroup$
                      – chi
                      6 hours ago












                      $begingroup$
                      @chi Yes, thank you for this comment ! Indeed the precision can be usefull.
                      $endgroup$
                      – TheSilverDoe
                      5 hours ago




                      $begingroup$
                      @chi Yes, thank you for this comment ! Indeed the precision can be usefull.
                      $endgroup$
                      – TheSilverDoe
                      5 hours ago











                      4












                      $begingroup$

                      A net is a function from an directed set $(I, le)$ (say) to a space $X$.



                      $f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.



                      The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.



                      I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.



                      If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.






                      share|cite|improve this answer











                      $endgroup$

















                        4












                        $begingroup$

                        A net is a function from an directed set $(I, le)$ (say) to a space $X$.



                        $f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.



                        The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.



                        I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.



                        If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.






                        share|cite|improve this answer











                        $endgroup$















                          4












                          4








                          4





                          $begingroup$

                          A net is a function from an directed set $(I, le)$ (say) to a space $X$.



                          $f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.



                          The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.



                          I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.



                          If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.






                          share|cite|improve this answer











                          $endgroup$



                          A net is a function from an directed set $(I, le)$ (say) to a space $X$.



                          $f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.



                          The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.



                          I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.



                          If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 8 hours ago

























                          answered 11 hours ago









                          Henno BrandsmaHenno Brandsma

                          113k348121




                          113k348121



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151413%2fhow-to-define-limit-operations-in-general-topological-spaces-are-nets-able-to-d%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                              Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                              Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe