Getting representations of the Lie group out of representations of its Lie algebra Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Geometric algebra approach to Lorentz group representationsIsomorphisms of the Lorentz group and algebraIrreducible representations of the Lorentz Lie algebraRepresentation of Lie groups as exponentiations of algebra representations.Reference for rigorous treatment of the representation theory of the Lorentz groupClassification of representations of the lie algebra $mathfraku(2)$.Relation between representations of Lie Group and Lie AlgebraCorrespondence between representations of a Lie group and Lie algebra.Representations of $sl(2,C)$ as a real Lie algebraDifference between infinitesimal parameters of Lie algebra and group generators of Lie group

Does a random sequence of vectors span a Hilbert space?

Calculation of line of sight system gain

New Order #6: Easter Egg

How do you write "wild blueberries flavored"?

Is there a spell that can create a permanent fire?

What did Turing mean when saying that "machines cannot give rise to surprises" is due to a fallacy?

As a dual citizen, my US passport will expire one day after traveling to the US. Will this work?

Why not use the yoke to control yaw, as well as pitch and roll?

Vertical ranges of Column Plots in 12

How to ask rejected full-time candidates to apply to teach individual courses?

How do Java 8 default methods hеlp with lambdas?

How do you cope with tons of web fonts when copying and pasting from web pages?

malloc in main() or malloc in another function: allocating memory for a struct and its members

Improvising over quartal voicings

How do I find my Spellcasting Ability for my D&D character?

Why do C and C++ allow the expression (int) + 4*5;

calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle

How does TikZ render an arc?

What is "Lambda" in Heston's original paper on stochastic volatility models?

Is a copyright notice with a non-existent name be invalid?

.bashrc alias for a command with fixed second parameter

How to achieve cat-like agility?

Is the Mordenkainen's Sword spell underpowered?

One-one communication



Getting representations of the Lie group out of representations of its Lie algebra



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Geometric algebra approach to Lorentz group representationsIsomorphisms of the Lorentz group and algebraIrreducible representations of the Lorentz Lie algebraRepresentation of Lie groups as exponentiations of algebra representations.Reference for rigorous treatment of the representation theory of the Lorentz groupClassification of representations of the lie algebra $mathfraku(2)$.Relation between representations of Lie Group and Lie AlgebraCorrespondence between representations of a Lie group and Lie algebra.Representations of $sl(2,C)$ as a real Lie algebraDifference between infinitesimal parameters of Lie algebra and group generators of Lie group










3












$begingroup$


This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



For instance, in Peskin's QFT book:




It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




The same thing is done in countless other books.



Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



$$mathscrD(exp theta X)=exp theta D(X).$$



Now, this seems to be very subtle.



In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?



Edit: I think I got, so I'm going to post a summary of what I understood to confirm it:




Let $G$ be a Lie group. All representations of $G$ give rise to representations of $mathfrakg$ by differentiation. Not all representations of $mathfrakg$ come from derivatives like this, however. These representations of $mathfrakg$ come from derivatives of representations of the universal cover of $G$, though. Then when $G$ is simply connected, all representations of $mathfrakg$ indeed come from $G$ as derivatives.



Now, if we know the representations of $mathfrakg$ we can determine by exponentiation the representations of the universal cover $tildeG$ of $G$ from which they are derived by exponentiation. This determines them in a neigbhorhood of the identity.



For the representations of $mathfrakg$ that indeed come from $G$, if $G$ is connected, then a neigbhorhood of the identity generates it, so that this is enough to reconstruct the representation everywhere.



Nevertheless, in the particular case of $SO_e^+(1,3)$ it so happens that this neighborhood of the identity reconstructed by the exponential is the whole group. Finally the representations of $mathfrakso(1,3)$ which do not come from $SO_e^+(1,3)$ come from the universal cover $SL_2(mathbbC)$.




Is this the whole point?










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



    In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



    But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



    For instance, in Peskin's QFT book:




    It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




    The same thing is done in countless other books.



    Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



    In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



    $$mathscrD(exp theta X)=exp theta D(X).$$



    Now, this seems to be very subtle.



    In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



    Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



    My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



    Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?



    Edit: I think I got, so I'm going to post a summary of what I understood to confirm it:




    Let $G$ be a Lie group. All representations of $G$ give rise to representations of $mathfrakg$ by differentiation. Not all representations of $mathfrakg$ come from derivatives like this, however. These representations of $mathfrakg$ come from derivatives of representations of the universal cover of $G$, though. Then when $G$ is simply connected, all representations of $mathfrakg$ indeed come from $G$ as derivatives.



    Now, if we know the representations of $mathfrakg$ we can determine by exponentiation the representations of the universal cover $tildeG$ of $G$ from which they are derived by exponentiation. This determines them in a neigbhorhood of the identity.



    For the representations of $mathfrakg$ that indeed come from $G$, if $G$ is connected, then a neigbhorhood of the identity generates it, so that this is enough to reconstruct the representation everywhere.



    Nevertheless, in the particular case of $SO_e^+(1,3)$ it so happens that this neighborhood of the identity reconstructed by the exponential is the whole group. Finally the representations of $mathfrakso(1,3)$ which do not come from $SO_e^+(1,3)$ come from the universal cover $SL_2(mathbbC)$.




    Is this the whole point?










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



      In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



      But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



      For instance, in Peskin's QFT book:




      It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




      The same thing is done in countless other books.



      Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



      In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



      $$mathscrD(exp theta X)=exp theta D(X).$$



      Now, this seems to be very subtle.



      In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



      Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



      My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



      Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?



      Edit: I think I got, so I'm going to post a summary of what I understood to confirm it:




      Let $G$ be a Lie group. All representations of $G$ give rise to representations of $mathfrakg$ by differentiation. Not all representations of $mathfrakg$ come from derivatives like this, however. These representations of $mathfrakg$ come from derivatives of representations of the universal cover of $G$, though. Then when $G$ is simply connected, all representations of $mathfrakg$ indeed come from $G$ as derivatives.



      Now, if we know the representations of $mathfrakg$ we can determine by exponentiation the representations of the universal cover $tildeG$ of $G$ from which they are derived by exponentiation. This determines them in a neigbhorhood of the identity.



      For the representations of $mathfrakg$ that indeed come from $G$, if $G$ is connected, then a neigbhorhood of the identity generates it, so that this is enough to reconstruct the representation everywhere.



      Nevertheless, in the particular case of $SO_e^+(1,3)$ it so happens that this neighborhood of the identity reconstructed by the exponential is the whole group. Finally the representations of $mathfrakso(1,3)$ which do not come from $SO_e^+(1,3)$ come from the universal cover $SL_2(mathbbC)$.




      Is this the whole point?










      share|cite|improve this question











      $endgroup$




      This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



      In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



      But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



      For instance, in Peskin's QFT book:




      It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




      The same thing is done in countless other books.



      Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



      In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



      $$mathscrD(exp theta X)=exp theta D(X).$$



      Now, this seems to be very subtle.



      In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



      Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



      My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



      Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?



      Edit: I think I got, so I'm going to post a summary of what I understood to confirm it:




      Let $G$ be a Lie group. All representations of $G$ give rise to representations of $mathfrakg$ by differentiation. Not all representations of $mathfrakg$ come from derivatives like this, however. These representations of $mathfrakg$ come from derivatives of representations of the universal cover of $G$, though. Then when $G$ is simply connected, all representations of $mathfrakg$ indeed come from $G$ as derivatives.



      Now, if we know the representations of $mathfrakg$ we can determine by exponentiation the representations of the universal cover $tildeG$ of $G$ from which they are derived by exponentiation. This determines them in a neigbhorhood of the identity.



      For the representations of $mathfrakg$ that indeed come from $G$, if $G$ is connected, then a neigbhorhood of the identity generates it, so that this is enough to reconstruct the representation everywhere.



      Nevertheless, in the particular case of $SO_e^+(1,3)$ it so happens that this neighborhood of the identity reconstructed by the exponential is the whole group. Finally the representations of $mathfrakso(1,3)$ which do not come from $SO_e^+(1,3)$ come from the universal cover $SL_2(mathbbC)$.




      Is this the whole point?







      representation-theory lie-groups lie-algebras mathematical-physics quantum-field-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 16 mins ago







      user1620696

















      asked 3 hours ago









      user1620696user1620696

      11.8k742119




      11.8k742119




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago










          • $begingroup$
            Thanks very much @QiaochuYuan, I think I finally got it. I posted one edit with a summary of what I understood of this matter. Could you please tell me if I got it right or if I misunderstood something? Thanks very much again!
            $endgroup$
            – user1620696
            14 mins ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196500%2fgetting-representations-of-the-lie-group-out-of-representations-of-its-lie-algeb%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago










          • $begingroup$
            Thanks very much @QiaochuYuan, I think I finally got it. I posted one edit with a summary of what I understood of this matter. Could you please tell me if I got it right or if I misunderstood something? Thanks very much again!
            $endgroup$
            – user1620696
            14 mins ago















          6












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago










          • $begingroup$
            Thanks very much @QiaochuYuan, I think I finally got it. I posted one edit with a summary of what I understood of this matter. Could you please tell me if I got it right or if I misunderstood something? Thanks very much again!
            $endgroup$
            – user1620696
            14 mins ago













          6












          6








          6





          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$



          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Qiaochu YuanQiaochu Yuan

          282k32599946




          282k32599946











          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago










          • $begingroup$
            Thanks very much @QiaochuYuan, I think I finally got it. I posted one edit with a summary of what I understood of this matter. Could you please tell me if I got it right or if I misunderstood something? Thanks very much again!
            $endgroup$
            – user1620696
            14 mins ago
















          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago










          • $begingroup$
            Thanks very much @QiaochuYuan, I think I finally got it. I posted one edit with a summary of what I understood of this matter. Could you please tell me if I got it right or if I misunderstood something? Thanks very much again!
            $endgroup$
            – user1620696
            14 mins ago















          $begingroup$
          There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
          $endgroup$
          – paul garrett
          1 hour ago




          $begingroup$
          There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
          $endgroup$
          – paul garrett
          1 hour ago












          $begingroup$
          Thanks very much @QiaochuYuan, I think I finally got it. I posted one edit with a summary of what I understood of this matter. Could you please tell me if I got it right or if I misunderstood something? Thanks very much again!
          $endgroup$
          – user1620696
          14 mins ago




          $begingroup$
          Thanks very much @QiaochuYuan, I think I finally got it. I posted one edit with a summary of what I understood of this matter. Could you please tell me if I got it right or if I misunderstood something? Thanks very much again!
          $endgroup$
          – user1620696
          14 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196500%2fgetting-representations-of-the-lie-group-out-of-representations-of-its-lie-algeb%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

          Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

          Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe