Is a manifold-with-boundary with given interior and non-empty boundary essentially unique? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Contractible manifold with boundary - is it a disc?Manifolds with two coordinate chartsDoes a *topological* manifold have an exhaustion by compact submanifolds with boundary?If 2-manifolds are homeomorphic and smooth, are they diffeomorphic?Exotic line arrangementsVolume form on a hyperbolic manifold with geodesic boundaryOn compact, orientable 3-manifolds with non-empty boundaryExtension of a group action beyond the boundaryFinding a specific Global Smooth FunctionRemove a disc from a manifold. When is the resulting sphere nullhomotopic?

Is a manifold-with-boundary with given interior and non-empty boundary essentially unique?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Contractible manifold with boundary - is it a disc?Manifolds with two coordinate chartsDoes a *topological* manifold have an exhaustion by compact submanifolds with boundary?If 2-manifolds are homeomorphic and smooth, are they diffeomorphic?Exotic line arrangementsVolume form on a hyperbolic manifold with geodesic boundaryOn compact, orientable 3-manifolds with non-empty boundaryExtension of a group action beyond the boundaryFinding a specific Global Smooth FunctionRemove a disc from a manifold. When is the resulting sphere nullhomotopic?










2












$begingroup$


Let $M$ be a compact connected manifold-with-boundary such that $circ M neq emptyset$, where $circ M$ is the boundary of $M$. Let $N$ be a compact connected manifold-with-boundary such that $circ N neq emptyset$ and $bullet M approx bullet N$, where $bullet M$ denotes the interior of $M$ and $approx$ denotes homeomorphic. Does it necessarily hold that $N approx M$?



(I have asked this question before here, but there were no replies.)










share|cite|improve this question









New contributor




kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    2












    $begingroup$


    Let $M$ be a compact connected manifold-with-boundary such that $circ M neq emptyset$, where $circ M$ is the boundary of $M$. Let $N$ be a compact connected manifold-with-boundary such that $circ N neq emptyset$ and $bullet M approx bullet N$, where $bullet M$ denotes the interior of $M$ and $approx$ denotes homeomorphic. Does it necessarily hold that $N approx M$?



    (I have asked this question before here, but there were no replies.)










    share|cite|improve this question









    New contributor




    kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      2












      2








      2





      $begingroup$


      Let $M$ be a compact connected manifold-with-boundary such that $circ M neq emptyset$, where $circ M$ is the boundary of $M$. Let $N$ be a compact connected manifold-with-boundary such that $circ N neq emptyset$ and $bullet M approx bullet N$, where $bullet M$ denotes the interior of $M$ and $approx$ denotes homeomorphic. Does it necessarily hold that $N approx M$?



      (I have asked this question before here, but there were no replies.)










      share|cite|improve this question









      New contributor




      kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Let $M$ be a compact connected manifold-with-boundary such that $circ M neq emptyset$, where $circ M$ is the boundary of $M$. Let $N$ be a compact connected manifold-with-boundary such that $circ N neq emptyset$ and $bullet M approx bullet N$, where $bullet M$ denotes the interior of $M$ and $approx$ denotes homeomorphic. Does it necessarily hold that $N approx M$?



      (I have asked this question before here, but there were no replies.)







      differential-topology manifolds






      share|cite|improve this question









      New contributor




      kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 5 hours ago









      YCor

      29.1k486140




      29.1k486140






      New contributor




      kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 7 hours ago









      kabakaba

      1111




      1111




      New contributor




      kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      kaba is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          8












          $begingroup$

          No, there are examples detected by Whitehead torsion. If $P$ is a compact connected $(n-1)$-manifold with empty boundary, then (assuming $nge 6$) for every element $tau$ of the Whitehead group of $pi_1(P)$ there is an $h$-cobordism $M$ on $P$ such that $tau$ is the Whitehead torsion of the pair $(M,P)$. The interior of $M$ will be isomorphic to $Ptimesmathbb R$, but if $tau$ is nontrivial then $M$ will not be isomorphic to $Ptimes I$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I do not yet understand the answer; I will have to read about Whitehead torsion tomorrow. Would the same answer apply if $M$ and $N$ were orientable?
            $endgroup$
            – kaba
            4 hours ago










          • $begingroup$
            Yes, it has nothing to do with orientability.
            $endgroup$
            – Tom Goodwillie
            3 hours ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          kaba is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328149%2fis-a-manifold-with-boundary-with-given-interior-and-non-empty-boundary-essential%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          8












          $begingroup$

          No, there are examples detected by Whitehead torsion. If $P$ is a compact connected $(n-1)$-manifold with empty boundary, then (assuming $nge 6$) for every element $tau$ of the Whitehead group of $pi_1(P)$ there is an $h$-cobordism $M$ on $P$ such that $tau$ is the Whitehead torsion of the pair $(M,P)$. The interior of $M$ will be isomorphic to $Ptimesmathbb R$, but if $tau$ is nontrivial then $M$ will not be isomorphic to $Ptimes I$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I do not yet understand the answer; I will have to read about Whitehead torsion tomorrow. Would the same answer apply if $M$ and $N$ were orientable?
            $endgroup$
            – kaba
            4 hours ago










          • $begingroup$
            Yes, it has nothing to do with orientability.
            $endgroup$
            – Tom Goodwillie
            3 hours ago















          8












          $begingroup$

          No, there are examples detected by Whitehead torsion. If $P$ is a compact connected $(n-1)$-manifold with empty boundary, then (assuming $nge 6$) for every element $tau$ of the Whitehead group of $pi_1(P)$ there is an $h$-cobordism $M$ on $P$ such that $tau$ is the Whitehead torsion of the pair $(M,P)$. The interior of $M$ will be isomorphic to $Ptimesmathbb R$, but if $tau$ is nontrivial then $M$ will not be isomorphic to $Ptimes I$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I do not yet understand the answer; I will have to read about Whitehead torsion tomorrow. Would the same answer apply if $M$ and $N$ were orientable?
            $endgroup$
            – kaba
            4 hours ago










          • $begingroup$
            Yes, it has nothing to do with orientability.
            $endgroup$
            – Tom Goodwillie
            3 hours ago













          8












          8








          8





          $begingroup$

          No, there are examples detected by Whitehead torsion. If $P$ is a compact connected $(n-1)$-manifold with empty boundary, then (assuming $nge 6$) for every element $tau$ of the Whitehead group of $pi_1(P)$ there is an $h$-cobordism $M$ on $P$ such that $tau$ is the Whitehead torsion of the pair $(M,P)$. The interior of $M$ will be isomorphic to $Ptimesmathbb R$, but if $tau$ is nontrivial then $M$ will not be isomorphic to $Ptimes I$.






          share|cite|improve this answer











          $endgroup$



          No, there are examples detected by Whitehead torsion. If $P$ is a compact connected $(n-1)$-manifold with empty boundary, then (assuming $nge 6$) for every element $tau$ of the Whitehead group of $pi_1(P)$ there is an $h$-cobordism $M$ on $P$ such that $tau$ is the Whitehead torsion of the pair $(M,P)$. The interior of $M$ will be isomorphic to $Ptimesmathbb R$, but if $tau$ is nontrivial then $M$ will not be isomorphic to $Ptimes I$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 5 hours ago

























          answered 6 hours ago









          Tom GoodwillieTom Goodwillie

          40.4k3110200




          40.4k3110200











          • $begingroup$
            Thank you. I do not yet understand the answer; I will have to read about Whitehead torsion tomorrow. Would the same answer apply if $M$ and $N$ were orientable?
            $endgroup$
            – kaba
            4 hours ago










          • $begingroup$
            Yes, it has nothing to do with orientability.
            $endgroup$
            – Tom Goodwillie
            3 hours ago
















          • $begingroup$
            Thank you. I do not yet understand the answer; I will have to read about Whitehead torsion tomorrow. Would the same answer apply if $M$ and $N$ were orientable?
            $endgroup$
            – kaba
            4 hours ago










          • $begingroup$
            Yes, it has nothing to do with orientability.
            $endgroup$
            – Tom Goodwillie
            3 hours ago















          $begingroup$
          Thank you. I do not yet understand the answer; I will have to read about Whitehead torsion tomorrow. Would the same answer apply if $M$ and $N$ were orientable?
          $endgroup$
          – kaba
          4 hours ago




          $begingroup$
          Thank you. I do not yet understand the answer; I will have to read about Whitehead torsion tomorrow. Would the same answer apply if $M$ and $N$ were orientable?
          $endgroup$
          – kaba
          4 hours ago












          $begingroup$
          Yes, it has nothing to do with orientability.
          $endgroup$
          – Tom Goodwillie
          3 hours ago




          $begingroup$
          Yes, it has nothing to do with orientability.
          $endgroup$
          – Tom Goodwillie
          3 hours ago










          kaba is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          kaba is a new contributor. Be nice, and check out our Code of Conduct.












          kaba is a new contributor. Be nice, and check out our Code of Conduct.











          kaba is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328149%2fis-a-manifold-with-boundary-with-given-interior-and-non-empty-boundary-essential%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

          Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

          Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр