Models of set theory where not every set can be linearly ordered Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Proving “every set can be totally ordered” without using Axiom of ChoiceCan all sets be totally ordered (not well-ordered) in ZF?How can there be genuine models of set theory?Reverse Mathematics of Well-OrderingsHow to exhibit models of set theoryZorn's lemma and maximal linearly ordered subsetsCounterexample to the Hausdorff Maximal PrincipleCan every non-empty set satisfying the axioms of $sfZF$ be totally ordered?Can Well Ordering Theorem Be Proved Without the Axiom of Power Set?the power set of every well-ordered set is well-ordered implies well orderingEvery countable linearly ordered set is similar to one of its subsetsLinearly ordering the power set of a well ordered set with ZF (without AC)

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

What is the correct way to use the pinch test for dehydration?

Why is "Consequences inflicted." not a sentence?

Why one of virtual NICs called bond0?

What is the longest distance a 13th-level monk can jump while attacking on the same turn?

What do you call a plan that's an alternative plan in case your initial plan fails?

What are the pros and cons of Aerospike nosecones?

What makes black pepper strong or mild?

Letter Boxed validator

Do I really need recursive chmod to restrict access to a folder?

When -s is used with third person singular. What's its use in this context?

Stars Make Stars

Storing hydrofluoric acid before the invention of plastics

Why aren't air breathing engines used as small first stages

Center align columns in table ignoring minus signs?

Does surprise arrest existing movement?

How to bypass password on Windows XP account?

How do I keep my slimes from escaping their pens?

G-Code for resetting to 100% speed

Is there a concise way to say "all of the X, one of each"?

Output the ŋarâþ crîþ alphabet song without using (m)any letters

How do I stop a creek from eroding my steep embankment?

List *all* the tuples!

What happens to sewage if there is no river near by?



Models of set theory where not every set can be linearly ordered



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Proving “every set can be totally ordered” without using Axiom of ChoiceCan all sets be totally ordered (not well-ordered) in ZF?How can there be genuine models of set theory?Reverse Mathematics of Well-OrderingsHow to exhibit models of set theoryZorn's lemma and maximal linearly ordered subsetsCounterexample to the Hausdorff Maximal PrincipleCan every non-empty set satisfying the axioms of $sfZF$ be totally ordered?Can Well Ordering Theorem Be Proved Without the Axiom of Power Set?the power set of every well-ordered set is well-ordered implies well orderingEvery countable linearly ordered set is similar to one of its subsetsLinearly ordering the power set of a well ordered set with ZF (without AC)










3












$begingroup$


Can anybody point me towards a model of set theory where not every set can be linearly ordered, and a corresponding proof. I have seen it claimed that in Fraenkels second permutation model that there is a set that cannot be linearly ordered, but cannot find a proof.



Essentially, I am asking for a proof that without choice sometimes the linear ordering principle fails.










share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
    $endgroup$
    – LGar
    8 hours ago






  • 1




    $begingroup$
    Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
    $endgroup$
    – Asaf Karagila
    6 hours ago






  • 1




    $begingroup$
    Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
    $endgroup$
    – YuiTo Cheng
    5 hours ago










  • $begingroup$
    This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
    $endgroup$
    – LGar
    3 hours ago










  • $begingroup$
    What about Is every set linearly ordered in ZF
    $endgroup$
    – YuiTo Cheng
    3 hours ago
















3












$begingroup$


Can anybody point me towards a model of set theory where not every set can be linearly ordered, and a corresponding proof. I have seen it claimed that in Fraenkels second permutation model that there is a set that cannot be linearly ordered, but cannot find a proof.



Essentially, I am asking for a proof that without choice sometimes the linear ordering principle fails.










share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
    $endgroup$
    – LGar
    8 hours ago






  • 1




    $begingroup$
    Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
    $endgroup$
    – Asaf Karagila
    6 hours ago






  • 1




    $begingroup$
    Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
    $endgroup$
    – YuiTo Cheng
    5 hours ago










  • $begingroup$
    This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
    $endgroup$
    – LGar
    3 hours ago










  • $begingroup$
    What about Is every set linearly ordered in ZF
    $endgroup$
    – YuiTo Cheng
    3 hours ago














3












3








3





$begingroup$


Can anybody point me towards a model of set theory where not every set can be linearly ordered, and a corresponding proof. I have seen it claimed that in Fraenkels second permutation model that there is a set that cannot be linearly ordered, but cannot find a proof.



Essentially, I am asking for a proof that without choice sometimes the linear ordering principle fails.










share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Can anybody point me towards a model of set theory where not every set can be linearly ordered, and a corresponding proof. I have seen it claimed that in Fraenkels second permutation model that there is a set that cannot be linearly ordered, but cannot find a proof.



Essentially, I am asking for a proof that without choice sometimes the linear ordering principle fails.







set-theory axiom-of-choice






share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







LGar













New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 8 hours ago









LGarLGar

406




406




New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
    $endgroup$
    – LGar
    8 hours ago






  • 1




    $begingroup$
    Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
    $endgroup$
    – Asaf Karagila
    6 hours ago






  • 1




    $begingroup$
    Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
    $endgroup$
    – YuiTo Cheng
    5 hours ago










  • $begingroup$
    This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
    $endgroup$
    – LGar
    3 hours ago










  • $begingroup$
    What about Is every set linearly ordered in ZF
    $endgroup$
    – YuiTo Cheng
    3 hours ago













  • 1




    $begingroup$
    In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
    $endgroup$
    – LGar
    8 hours ago






  • 1




    $begingroup$
    Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
    $endgroup$
    – Asaf Karagila
    6 hours ago






  • 1




    $begingroup$
    Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
    $endgroup$
    – YuiTo Cheng
    5 hours ago










  • $begingroup$
    This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
    $endgroup$
    – LGar
    3 hours ago










  • $begingroup$
    What about Is every set linearly ordered in ZF
    $endgroup$
    – YuiTo Cheng
    3 hours ago








1




1




$begingroup$
In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
$endgroup$
– LGar
8 hours ago




$begingroup$
In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
$endgroup$
– LGar
8 hours ago




1




1




$begingroup$
Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
$endgroup$
– Asaf Karagila
6 hours ago




$begingroup$
Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
$endgroup$
– Asaf Karagila
6 hours ago




1




1




$begingroup$
Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
$endgroup$
– YuiTo Cheng
5 hours ago




$begingroup$
Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
$endgroup$
– YuiTo Cheng
5 hours ago












$begingroup$
This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
$endgroup$
– LGar
3 hours ago




$begingroup$
This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
$endgroup$
– LGar
3 hours ago












$begingroup$
What about Is every set linearly ordered in ZF
$endgroup$
– YuiTo Cheng
3 hours ago





$begingroup$
What about Is every set linearly ordered in ZF
$endgroup$
– YuiTo Cheng
3 hours ago











2 Answers
2






active

oldest

votes


















7












$begingroup$

Yes, both of Fraenkel's models are examples of such models. To see why note that:



  1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


  2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.






share|cite|improve this answer









$endgroup$




















    6












    $begingroup$

    An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



    Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




    MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.







    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      Good examples, albeit significantly more complicated! :-)
      $endgroup$
      – Asaf Karagila
      6 hours ago











    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    LGar is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189095%2fmodels-of-set-theory-where-not-every-set-can-be-linearly-ordered%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    Yes, both of Fraenkel's models are examples of such models. To see why note that:



    1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


    2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


    For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.






    share|cite|improve this answer









    $endgroup$

















      7












      $begingroup$

      Yes, both of Fraenkel's models are examples of such models. To see why note that:



      1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


      2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


      For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.






      share|cite|improve this answer









      $endgroup$















        7












        7








        7





        $begingroup$

        Yes, both of Fraenkel's models are examples of such models. To see why note that:



        1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


        2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


        For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.






        share|cite|improve this answer









        $endgroup$



        Yes, both of Fraenkel's models are examples of such models. To see why note that:



        1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


        2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


        For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 8 hours ago









        Asaf KaragilaAsaf Karagila

        308k33441775




        308k33441775





















            6












            $begingroup$

            An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



            Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




            MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.







            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              Good examples, albeit significantly more complicated! :-)
              $endgroup$
              – Asaf Karagila
              6 hours ago















            6












            $begingroup$

            An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



            Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




            MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.







            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              Good examples, albeit significantly more complicated! :-)
              $endgroup$
              – Asaf Karagila
              6 hours ago













            6












            6








            6





            $begingroup$

            An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



            Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




            MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.







            share|cite|improve this answer









            $endgroup$



            An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



            Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




            MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.








            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 8 hours ago









            Andrés E. CaicedoAndrés E. Caicedo

            66.1k8160252




            66.1k8160252







            • 1




              $begingroup$
              Good examples, albeit significantly more complicated! :-)
              $endgroup$
              – Asaf Karagila
              6 hours ago












            • 1




              $begingroup$
              Good examples, albeit significantly more complicated! :-)
              $endgroup$
              – Asaf Karagila
              6 hours ago







            1




            1




            $begingroup$
            Good examples, albeit significantly more complicated! :-)
            $endgroup$
            – Asaf Karagila
            6 hours ago




            $begingroup$
            Good examples, albeit significantly more complicated! :-)
            $endgroup$
            – Asaf Karagila
            6 hours ago










            LGar is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            LGar is a new contributor. Be nice, and check out our Code of Conduct.












            LGar is a new contributor. Be nice, and check out our Code of Conduct.











            LGar is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189095%2fmodels-of-set-theory-where-not-every-set-can-be-linearly-ordered%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

            Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

            Category:Tremithousa Media in category "Tremithousa"Navigation menuUpload media34° 49′ 02.7″ N, 32° 26′ 37.32″ EOpenStreetMapGoogle EarthProximityramaReasonatorScholiaStatisticsWikiShootMe