Keeping a ball lost foreverFour stones on a Go-boardBlock the snake from reaching pointsNumber swapping gameLeast amount of moves is requiredHnefatafl - a lost ArtJonMark Perry's Grid Logic PuzzleGuide the dots to land on the portals at the same timeGuide dots to land on any pair of matching portals at the same time20 cards facing downThe No-Straight Maze

How should I respond when I lied about my education and the company finds out through background check?

How much character growth crosses the line into breaking the character

How to explain what's wrong with this application of the chain rule?

Biological Blimps: Propulsion

Temporarily disable WLAN internet access for children, but allow it for adults

How does a computer interpret real numbers?

Why does the Sun have different day lengths, but not the gas giants?

What does "Scientists rise up against statistical significance" mean? (Comment in Nature)

Lowest total scrabble score

How could a planet have erratic days?

Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low) temperature?

What is the highest possible scrabble score for placing a single tile

putting logo on same line but after title, latex

creating a ":KeepCursor" command

Angel of Condemnation - Exile creature with second ability

Quoting Keynes in a lecture

Can a Canadian Travel to the USA twice, less than 180 days each time?

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

Hero deduces identity of a killer

Is aluminum electrical wire used on aircraft?

It grows, but water kills it

Non-trope happy ending?

What should you do if you miss a job interview (deliberately)?

What happens to a creature that changes size inside of Otiluke's Resilient Sphere?



Keeping a ball lost forever


Four stones on a Go-boardBlock the snake from reaching pointsNumber swapping gameLeast amount of moves is requiredHnefatafl - a lost ArtJonMark Perry's Grid Logic PuzzleGuide the dots to land on the portals at the same timeGuide dots to land on any pair of matching portals at the same time20 cards facing downThe No-Straight Maze













4












$begingroup$


Suppose you can make a rectangular maze, where each cell (apart from the bottom-right) can contain an arrow in one of the four directions (up, down, left or right) of your choosing, except for those on an edge or corner, which must not point out of the maze.



A ball is then placed into the top-left square and begins to move. It will move in the direction of the arrow in the cell that it is currently in. Then, that arrow will rotate 90 degrees clockwise. If an arrow is pointing out of the maze, it will continue rotating clockwise until it points in a valid direction.



A valid maze is one in which the ball will never reach the bottom-right corner.




Prove or disprove the existence of such a maze. If it exists, find the smallest possible maze (in terms of number of squares).





Here is an example of a maze.



An example of a 2x2 maze. Top-left (A1) has arrow pointing right, top-right (A2) is pointing left, lower-left (B1) is pointing up.



  • The ball begins in A1. It moves right to A2, and the A1 arrow rotates to point down.

  • The ball moves left to A1, and the A2 arrow rotates to point down (as both up and right point out of the maze).

  • The ball moves down to B1, and the A1 arrow rotates to point right (as both left and up point out of the maze).

  • The ball moves up to A1, and the B1 arrow rotates to point right.

  • The ball moves right to A2, and the A1 arrow rotates to point down.

  • The ball moves down to B2, and the A2 arrow rotates to point left.

  • Now, the ball is in B2, the bottom-right corner of the maze, so that is the end. It is not a valid maze, but if it were, it would have a score of $4$.









share|improve this question









$endgroup$
















    4












    $begingroup$


    Suppose you can make a rectangular maze, where each cell (apart from the bottom-right) can contain an arrow in one of the four directions (up, down, left or right) of your choosing, except for those on an edge or corner, which must not point out of the maze.



    A ball is then placed into the top-left square and begins to move. It will move in the direction of the arrow in the cell that it is currently in. Then, that arrow will rotate 90 degrees clockwise. If an arrow is pointing out of the maze, it will continue rotating clockwise until it points in a valid direction.



    A valid maze is one in which the ball will never reach the bottom-right corner.




    Prove or disprove the existence of such a maze. If it exists, find the smallest possible maze (in terms of number of squares).





    Here is an example of a maze.



    An example of a 2x2 maze. Top-left (A1) has arrow pointing right, top-right (A2) is pointing left, lower-left (B1) is pointing up.



    • The ball begins in A1. It moves right to A2, and the A1 arrow rotates to point down.

    • The ball moves left to A1, and the A2 arrow rotates to point down (as both up and right point out of the maze).

    • The ball moves down to B1, and the A1 arrow rotates to point right (as both left and up point out of the maze).

    • The ball moves up to A1, and the B1 arrow rotates to point right.

    • The ball moves right to A2, and the A1 arrow rotates to point down.

    • The ball moves down to B2, and the A2 arrow rotates to point left.

    • Now, the ball is in B2, the bottom-right corner of the maze, so that is the end. It is not a valid maze, but if it were, it would have a score of $4$.









    share|improve this question









    $endgroup$














      4












      4








      4





      $begingroup$


      Suppose you can make a rectangular maze, where each cell (apart from the bottom-right) can contain an arrow in one of the four directions (up, down, left or right) of your choosing, except for those on an edge or corner, which must not point out of the maze.



      A ball is then placed into the top-left square and begins to move. It will move in the direction of the arrow in the cell that it is currently in. Then, that arrow will rotate 90 degrees clockwise. If an arrow is pointing out of the maze, it will continue rotating clockwise until it points in a valid direction.



      A valid maze is one in which the ball will never reach the bottom-right corner.




      Prove or disprove the existence of such a maze. If it exists, find the smallest possible maze (in terms of number of squares).





      Here is an example of a maze.



      An example of a 2x2 maze. Top-left (A1) has arrow pointing right, top-right (A2) is pointing left, lower-left (B1) is pointing up.



      • The ball begins in A1. It moves right to A2, and the A1 arrow rotates to point down.

      • The ball moves left to A1, and the A2 arrow rotates to point down (as both up and right point out of the maze).

      • The ball moves down to B1, and the A1 arrow rotates to point right (as both left and up point out of the maze).

      • The ball moves up to A1, and the B1 arrow rotates to point right.

      • The ball moves right to A2, and the A1 arrow rotates to point down.

      • The ball moves down to B2, and the A2 arrow rotates to point left.

      • Now, the ball is in B2, the bottom-right corner of the maze, so that is the end. It is not a valid maze, but if it were, it would have a score of $4$.









      share|improve this question









      $endgroup$




      Suppose you can make a rectangular maze, where each cell (apart from the bottom-right) can contain an arrow in one of the four directions (up, down, left or right) of your choosing, except for those on an edge or corner, which must not point out of the maze.



      A ball is then placed into the top-left square and begins to move. It will move in the direction of the arrow in the cell that it is currently in. Then, that arrow will rotate 90 degrees clockwise. If an arrow is pointing out of the maze, it will continue rotating clockwise until it points in a valid direction.



      A valid maze is one in which the ball will never reach the bottom-right corner.




      Prove or disprove the existence of such a maze. If it exists, find the smallest possible maze (in terms of number of squares).





      Here is an example of a maze.



      An example of a 2x2 maze. Top-left (A1) has arrow pointing right, top-right (A2) is pointing left, lower-left (B1) is pointing up.



      • The ball begins in A1. It moves right to A2, and the A1 arrow rotates to point down.

      • The ball moves left to A1, and the A2 arrow rotates to point down (as both up and right point out of the maze).

      • The ball moves down to B1, and the A1 arrow rotates to point right (as both left and up point out of the maze).

      • The ball moves up to A1, and the B1 arrow rotates to point right.

      • The ball moves right to A2, and the A1 arrow rotates to point down.

      • The ball moves down to B2, and the A2 arrow rotates to point left.

      • Now, the ball is in B2, the bottom-right corner of the maze, so that is the end. It is not a valid maze, but if it were, it would have a score of $4$.






      logical-deduction strategy optimization






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 3 hours ago









      ZanyGZanyG

      1,096420




      1,096420




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$


          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.







          share|improve this answer









          $endgroup$












          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            3 hours ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "559"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80948%2fkeeping-a-ball-lost-forever%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$


          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.







          share|improve this answer









          $endgroup$












          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            3 hours ago















          7












          $begingroup$


          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.







          share|improve this answer









          $endgroup$












          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            3 hours ago













          7












          7








          7





          $begingroup$


          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.







          share|improve this answer









          $endgroup$




          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.








          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 3 hours ago









          noednenoedne

          7,18712057




          7,18712057











          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            3 hours ago
















          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            3 hours ago















          $begingroup$
          Very succinct; well done. I'll wait a bit before accepting.
          $endgroup$
          – ZanyG
          3 hours ago




          $begingroup$
          Very succinct; well done. I'll wait a bit before accepting.
          $endgroup$
          – ZanyG
          3 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Puzzling Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80948%2fkeeping-a-ball-lost-forever%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

          Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

          Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр