Sliceness of knots Planned maintenance scheduled April 23, 2019 at 23:30UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Generating ribbon diagrams for knots known to be ribbon knotsHow expensive is knowledge? Knots, Links, 3 and 4-manifold algorithms. Tying knots with reflecting lightraysCan you flip the end of a large exotic $mathbbR^4$Show a Map Defined on $S_3$ (trivially-embedded) in S^4 extends. Complexity of surfaces bounding knots in 4-ball and 3-sphere respectivelyThe Freedman DichotomiesGap in Przytycki's computation of the skein module of links in a handlebody?Slicing satellite knotsA counter-example for the reversed direction of Casson-Gordon's theorem

Sliceness of knots



Planned maintenance scheduled April 23, 2019 at 23:30UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Generating ribbon diagrams for knots known to be ribbon knotsHow expensive is knowledge? Knots, Links, 3 and 4-manifold algorithms. Tying knots with reflecting lightraysCan you flip the end of a large exotic $mathbbR^4$Show a Map Defined on $S_3$ (trivially-embedded) in S^4 extends. Complexity of surfaces bounding knots in 4-ball and 3-sphere respectivelyThe Freedman DichotomiesGap in Przytycki's computation of the skein module of links in a handlebody?Slicing satellite knotsA counter-example for the reversed direction of Casson-Gordon's theorem










4












$begingroup$


For a subring $R⊂ mathbb Q$, a knot $K⊂S^3$ is called $R$-slice if there exists an embedded disk $D$ in an $R$-homology $4$-ball $B$ such that $∂(B,D) = (S^3,K)$, see [Definition 1.3, KW16]. We say $K$ is rationally (resp. integrally) slice if $R= mathbb Q$ (resp. $= mathbb Z$).



In terms of crossing, the minimal example of rationally slice knot seems (probably is) figure-eight knot $4_1$, see [Theorem 4.16, Cha07].



A knot $K ⊂ S^3$ is slice if it bounds a smoothly embedded disk $D^2$ in the $4$-ball $B^4$. Again in terms of crossing, the minimal example of slice knot is unknot $0_1$.



My question is that is there any minimal example of integrally slice knot?










share|cite|improve this question









New contributor




M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    4












    $begingroup$


    For a subring $R⊂ mathbb Q$, a knot $K⊂S^3$ is called $R$-slice if there exists an embedded disk $D$ in an $R$-homology $4$-ball $B$ such that $∂(B,D) = (S^3,K)$, see [Definition 1.3, KW16]. We say $K$ is rationally (resp. integrally) slice if $R= mathbb Q$ (resp. $= mathbb Z$).



    In terms of crossing, the minimal example of rationally slice knot seems (probably is) figure-eight knot $4_1$, see [Theorem 4.16, Cha07].



    A knot $K ⊂ S^3$ is slice if it bounds a smoothly embedded disk $D^2$ in the $4$-ball $B^4$. Again in terms of crossing, the minimal example of slice knot is unknot $0_1$.



    My question is that is there any minimal example of integrally slice knot?










    share|cite|improve this question









    New contributor




    M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      4












      4








      4


      2



      $begingroup$


      For a subring $R⊂ mathbb Q$, a knot $K⊂S^3$ is called $R$-slice if there exists an embedded disk $D$ in an $R$-homology $4$-ball $B$ such that $∂(B,D) = (S^3,K)$, see [Definition 1.3, KW16]. We say $K$ is rationally (resp. integrally) slice if $R= mathbb Q$ (resp. $= mathbb Z$).



      In terms of crossing, the minimal example of rationally slice knot seems (probably is) figure-eight knot $4_1$, see [Theorem 4.16, Cha07].



      A knot $K ⊂ S^3$ is slice if it bounds a smoothly embedded disk $D^2$ in the $4$-ball $B^4$. Again in terms of crossing, the minimal example of slice knot is unknot $0_1$.



      My question is that is there any minimal example of integrally slice knot?










      share|cite|improve this question









      New contributor




      M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      For a subring $R⊂ mathbb Q$, a knot $K⊂S^3$ is called $R$-slice if there exists an embedded disk $D$ in an $R$-homology $4$-ball $B$ such that $∂(B,D) = (S^3,K)$, see [Definition 1.3, KW16]. We say $K$ is rationally (resp. integrally) slice if $R= mathbb Q$ (resp. $= mathbb Z$).



      In terms of crossing, the minimal example of rationally slice knot seems (probably is) figure-eight knot $4_1$, see [Theorem 4.16, Cha07].



      A knot $K ⊂ S^3$ is slice if it bounds a smoothly embedded disk $D^2$ in the $4$-ball $B^4$. Again in terms of crossing, the minimal example of slice knot is unknot $0_1$.



      My question is that is there any minimal example of integrally slice knot?







      gt.geometric-topology knot-theory






      share|cite|improve this question









      New contributor




      M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago







      M. Alessandro Ferrari













      New contributor




      M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 hours ago









      M. Alessandro FerrariM. Alessandro Ferrari

      485




      485




      New contributor




      M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      M. Alessandro Ferrari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Both $6_1$ and $3_1 # m(3_1)$ are smoothly slice (as is the unknot), and I claim that all other knots of at most seven crossings are not integrally slice. This will follow from two claims: first, if $K$ is integrally slice then $fracDelta_K''(1)2$ is even; and second, if $K$ is alternating and rationally slice then its signature is zero. (Note that $8_3$ satisfies both of these but is not smoothly slice; I don't know whether it is integrally slice.)



          The key observation is that if $K$ is integrally slice, then $S^3_1(K)$ must be integrally homology cobordant to $S^3$. To see this, we take a slice disk bounded by $K$ in a homology ball, and we remove a ball about some point on the disk to get a concordance from $U$ to $K$ inside a homology cobordism from $S^3$ to itself. Performing a 1-surgery along this cylinder gives us the desired homology cobordism.



          From here, filling in the $S^3$ end with a ball gives us a smooth homology ball bounded by $S^3_1(K)$. Thus $S^3_1(K)$ has vanishing Rohklin invariant, or equivalently its Casson invariant is even, and the surgery formula for the latter says that $fracDelta_K''(1)2$ must be even.



          For the second claim, $S^3_1(K)$ is rationally homology cobordant to $S^3$, so its Heegaard Floer d-invariant must be zero. When $K$ is alternating, this was computed to be $2min(0,-lceil -sigma(K)/4rceil)$ for alternating $K$ by Ozsváth and Szabó (arXiv:0209149, corollary 1.5), so we must have $sigma(K) geq 0$. But the same argument applies to the mirror $m(K)$, with signature $-sigma(K)$, so in fact $K$ must have signature zero.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            M. Alessandro Ferrari is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328473%2fsliceness-of-knots%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Both $6_1$ and $3_1 # m(3_1)$ are smoothly slice (as is the unknot), and I claim that all other knots of at most seven crossings are not integrally slice. This will follow from two claims: first, if $K$ is integrally slice then $fracDelta_K''(1)2$ is even; and second, if $K$ is alternating and rationally slice then its signature is zero. (Note that $8_3$ satisfies both of these but is not smoothly slice; I don't know whether it is integrally slice.)



            The key observation is that if $K$ is integrally slice, then $S^3_1(K)$ must be integrally homology cobordant to $S^3$. To see this, we take a slice disk bounded by $K$ in a homology ball, and we remove a ball about some point on the disk to get a concordance from $U$ to $K$ inside a homology cobordism from $S^3$ to itself. Performing a 1-surgery along this cylinder gives us the desired homology cobordism.



            From here, filling in the $S^3$ end with a ball gives us a smooth homology ball bounded by $S^3_1(K)$. Thus $S^3_1(K)$ has vanishing Rohklin invariant, or equivalently its Casson invariant is even, and the surgery formula for the latter says that $fracDelta_K''(1)2$ must be even.



            For the second claim, $S^3_1(K)$ is rationally homology cobordant to $S^3$, so its Heegaard Floer d-invariant must be zero. When $K$ is alternating, this was computed to be $2min(0,-lceil -sigma(K)/4rceil)$ for alternating $K$ by Ozsváth and Szabó (arXiv:0209149, corollary 1.5), so we must have $sigma(K) geq 0$. But the same argument applies to the mirror $m(K)$, with signature $-sigma(K)$, so in fact $K$ must have signature zero.






            share|cite|improve this answer









            $endgroup$

















              4












              $begingroup$

              Both $6_1$ and $3_1 # m(3_1)$ are smoothly slice (as is the unknot), and I claim that all other knots of at most seven crossings are not integrally slice. This will follow from two claims: first, if $K$ is integrally slice then $fracDelta_K''(1)2$ is even; and second, if $K$ is alternating and rationally slice then its signature is zero. (Note that $8_3$ satisfies both of these but is not smoothly slice; I don't know whether it is integrally slice.)



              The key observation is that if $K$ is integrally slice, then $S^3_1(K)$ must be integrally homology cobordant to $S^3$. To see this, we take a slice disk bounded by $K$ in a homology ball, and we remove a ball about some point on the disk to get a concordance from $U$ to $K$ inside a homology cobordism from $S^3$ to itself. Performing a 1-surgery along this cylinder gives us the desired homology cobordism.



              From here, filling in the $S^3$ end with a ball gives us a smooth homology ball bounded by $S^3_1(K)$. Thus $S^3_1(K)$ has vanishing Rohklin invariant, or equivalently its Casson invariant is even, and the surgery formula for the latter says that $fracDelta_K''(1)2$ must be even.



              For the second claim, $S^3_1(K)$ is rationally homology cobordant to $S^3$, so its Heegaard Floer d-invariant must be zero. When $K$ is alternating, this was computed to be $2min(0,-lceil -sigma(K)/4rceil)$ for alternating $K$ by Ozsváth and Szabó (arXiv:0209149, corollary 1.5), so we must have $sigma(K) geq 0$. But the same argument applies to the mirror $m(K)$, with signature $-sigma(K)$, so in fact $K$ must have signature zero.






              share|cite|improve this answer









              $endgroup$















                4












                4








                4





                $begingroup$

                Both $6_1$ and $3_1 # m(3_1)$ are smoothly slice (as is the unknot), and I claim that all other knots of at most seven crossings are not integrally slice. This will follow from two claims: first, if $K$ is integrally slice then $fracDelta_K''(1)2$ is even; and second, if $K$ is alternating and rationally slice then its signature is zero. (Note that $8_3$ satisfies both of these but is not smoothly slice; I don't know whether it is integrally slice.)



                The key observation is that if $K$ is integrally slice, then $S^3_1(K)$ must be integrally homology cobordant to $S^3$. To see this, we take a slice disk bounded by $K$ in a homology ball, and we remove a ball about some point on the disk to get a concordance from $U$ to $K$ inside a homology cobordism from $S^3$ to itself. Performing a 1-surgery along this cylinder gives us the desired homology cobordism.



                From here, filling in the $S^3$ end with a ball gives us a smooth homology ball bounded by $S^3_1(K)$. Thus $S^3_1(K)$ has vanishing Rohklin invariant, or equivalently its Casson invariant is even, and the surgery formula for the latter says that $fracDelta_K''(1)2$ must be even.



                For the second claim, $S^3_1(K)$ is rationally homology cobordant to $S^3$, so its Heegaard Floer d-invariant must be zero. When $K$ is alternating, this was computed to be $2min(0,-lceil -sigma(K)/4rceil)$ for alternating $K$ by Ozsváth and Szabó (arXiv:0209149, corollary 1.5), so we must have $sigma(K) geq 0$. But the same argument applies to the mirror $m(K)$, with signature $-sigma(K)$, so in fact $K$ must have signature zero.






                share|cite|improve this answer









                $endgroup$



                Both $6_1$ and $3_1 # m(3_1)$ are smoothly slice (as is the unknot), and I claim that all other knots of at most seven crossings are not integrally slice. This will follow from two claims: first, if $K$ is integrally slice then $fracDelta_K''(1)2$ is even; and second, if $K$ is alternating and rationally slice then its signature is zero. (Note that $8_3$ satisfies both of these but is not smoothly slice; I don't know whether it is integrally slice.)



                The key observation is that if $K$ is integrally slice, then $S^3_1(K)$ must be integrally homology cobordant to $S^3$. To see this, we take a slice disk bounded by $K$ in a homology ball, and we remove a ball about some point on the disk to get a concordance from $U$ to $K$ inside a homology cobordism from $S^3$ to itself. Performing a 1-surgery along this cylinder gives us the desired homology cobordism.



                From here, filling in the $S^3$ end with a ball gives us a smooth homology ball bounded by $S^3_1(K)$. Thus $S^3_1(K)$ has vanishing Rohklin invariant, or equivalently its Casson invariant is even, and the surgery formula for the latter says that $fracDelta_K''(1)2$ must be even.



                For the second claim, $S^3_1(K)$ is rationally homology cobordant to $S^3$, so its Heegaard Floer d-invariant must be zero. When $K$ is alternating, this was computed to be $2min(0,-lceil -sigma(K)/4rceil)$ for alternating $K$ by Ozsváth and Szabó (arXiv:0209149, corollary 1.5), so we must have $sigma(K) geq 0$. But the same argument applies to the mirror $m(K)$, with signature $-sigma(K)$, so in fact $K$ must have signature zero.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                Steven SivekSteven Sivek

                5,16912924




                5,16912924




















                    M. Alessandro Ferrari is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    M. Alessandro Ferrari is a new contributor. Be nice, and check out our Code of Conduct.












                    M. Alessandro Ferrari is a new contributor. Be nice, and check out our Code of Conduct.











                    M. Alessandro Ferrari is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328473%2fsliceness-of-knots%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр