Kepler's 3rd law: ratios don't fit data2019 Community Moderator Election Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) 2019 Moderator Election Q&A - QuestionnaireKepler's third law doesn't give earth's orbital period! Why?Only gravitation and Newton's $2^mathrmnd$ law needed to derive Kepler's laws?Newton's gravity formulas for ellipsesAngular Momentum and Kepler's Second LawCan the constant $k$ from Kepler's third law be independent of the mass of the planet?Kepler's law and my problemKepler's 3rd law applied to binary systems: How can the two orbits have different semi-major axes?Which Kepler laws might change with the Universal Gravitational Constant?Why does angular momentum being constant prove Kepler's first law?Kepler's third law is unintuitive

What were wait-states, and why was it only an issue for PCs?

What is the evidence that custom checks in Northern Ireland are going to result in violence?

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

Protagonist's race is hidden - should I reveal it?

Is it OK if I do not take the receipt in Germany?

Like totally amazing interchangeable sister outfit accessory swapping or whatever

Marquee sign letters

Will I be more secure with my own router behind my ISP's router?

How to make an animal which can only breed for a certain number of generations?

Recursive calls to a function - why is the address of the parameter passed to it lowering with each call?

Assertions In A Mock Callout Test

Is the Mordenkainen's Sword spell underpowered?

Why these surprising proportionalities of integrals involving odd zeta values?

Does traveling In The United States require a passport or can I use my green card if not a US citizen?

Married in secret, can marital status in passport be changed at a later date?

Why does BitLocker not use RSA?

Is Vivien of the Wilds + Wilderness Reclamation a competitive combo?

Can this water damage be explained by lack of gutters and grading issues?

Etymology of 見舞い

If gravity precedes the formation of a solar system, where did the mass come from that caused the gravity?

Help Recreating a Table

tabularx column has extra padding at right?

How to keep bees out of canned beverages?

Is "ein Herz wie das meine" an antiquated or colloquial use of the possesive pronoun?



Kepler's 3rd law: ratios don't fit data



2019 Community Moderator Election
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
2019 Moderator Election Q&A - QuestionnaireKepler's third law doesn't give earth's orbital period! Why?Only gravitation and Newton's $2^mathrmnd$ law needed to derive Kepler's laws?Newton's gravity formulas for ellipsesAngular Momentum and Kepler's Second LawCan the constant $k$ from Kepler's third law be independent of the mass of the planet?Kepler's law and my problemKepler's 3rd law applied to binary systems: How can the two orbits have different semi-major axes?Which Kepler laws might change with the Universal Gravitational Constant?Why does angular momentum being constant prove Kepler's first law?Kepler's third law is unintuitive










3












$begingroup$


I have been looking at satellite orbits around the earth, or any object around any planet in fact, and am trying to find the orbital radius, or semi major length of a given satellite.



Kepler's third law gives the equation $P^2 = a^3$ where $P$ is the period of orbit and $a$ the distance.



I have a table of satellites currently orbiting the earth, as well as their altitude in the sky on their geosynchronous trajectory. One in particular is 99.9 and has an altitude of 705.



By solving the equation for $a$, I get $a = (P^2)^1/3$.



When I plug in the numbers, they don't correspond.



So my questions are:



  1. Are there unit standards I need for both $P$ and $a$? Currently $P$ is in minutes, $a$ in kilometres.

  2. Am I missing something, like Newton's universal gravitational constant? I get a page deriving Kepler's third law using this constant.









share|cite|improve this question









New contributor




triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    hyperphysics.phy-astr.gsu.edu/hbase/kepler.html#c6
    $endgroup$
    – Kyle Kanos
    9 hours ago










  • $begingroup$
    The equality only holds in certain units since its dimensionally inhomogeneous. In particular, if you use Earth years and the Earth-Sun distance (i.e. 1a.u.) then it's true, so it must be true in those specific units.
    $endgroup$
    – jacob1729
    7 hours ago






  • 1




    $begingroup$
    BTW, do you understand that $a$ is not altitude but rather distance from the center of the Earth?
    $endgroup$
    – G. Smith
    3 hours ago
















3












$begingroup$


I have been looking at satellite orbits around the earth, or any object around any planet in fact, and am trying to find the orbital radius, or semi major length of a given satellite.



Kepler's third law gives the equation $P^2 = a^3$ where $P$ is the period of orbit and $a$ the distance.



I have a table of satellites currently orbiting the earth, as well as their altitude in the sky on their geosynchronous trajectory. One in particular is 99.9 and has an altitude of 705.



By solving the equation for $a$, I get $a = (P^2)^1/3$.



When I plug in the numbers, they don't correspond.



So my questions are:



  1. Are there unit standards I need for both $P$ and $a$? Currently $P$ is in minutes, $a$ in kilometres.

  2. Am I missing something, like Newton's universal gravitational constant? I get a page deriving Kepler's third law using this constant.









share|cite|improve this question









New contributor




triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    hyperphysics.phy-astr.gsu.edu/hbase/kepler.html#c6
    $endgroup$
    – Kyle Kanos
    9 hours ago










  • $begingroup$
    The equality only holds in certain units since its dimensionally inhomogeneous. In particular, if you use Earth years and the Earth-Sun distance (i.e. 1a.u.) then it's true, so it must be true in those specific units.
    $endgroup$
    – jacob1729
    7 hours ago






  • 1




    $begingroup$
    BTW, do you understand that $a$ is not altitude but rather distance from the center of the Earth?
    $endgroup$
    – G. Smith
    3 hours ago














3












3








3





$begingroup$


I have been looking at satellite orbits around the earth, or any object around any planet in fact, and am trying to find the orbital radius, or semi major length of a given satellite.



Kepler's third law gives the equation $P^2 = a^3$ where $P$ is the period of orbit and $a$ the distance.



I have a table of satellites currently orbiting the earth, as well as their altitude in the sky on their geosynchronous trajectory. One in particular is 99.9 and has an altitude of 705.



By solving the equation for $a$, I get $a = (P^2)^1/3$.



When I plug in the numbers, they don't correspond.



So my questions are:



  1. Are there unit standards I need for both $P$ and $a$? Currently $P$ is in minutes, $a$ in kilometres.

  2. Am I missing something, like Newton's universal gravitational constant? I get a page deriving Kepler's third law using this constant.









share|cite|improve this question









New contributor




triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I have been looking at satellite orbits around the earth, or any object around any planet in fact, and am trying to find the orbital radius, or semi major length of a given satellite.



Kepler's third law gives the equation $P^2 = a^3$ where $P$ is the period of orbit and $a$ the distance.



I have a table of satellites currently orbiting the earth, as well as their altitude in the sky on their geosynchronous trajectory. One in particular is 99.9 and has an altitude of 705.



By solving the equation for $a$, I get $a = (P^2)^1/3$.



When I plug in the numbers, they don't correspond.



So my questions are:



  1. Are there unit standards I need for both $P$ and $a$? Currently $P$ is in minutes, $a$ in kilometres.

  2. Am I missing something, like Newton's universal gravitational constant? I get a page deriving Kepler's third law using this constant.






newtonian-mechanics newtonian-gravity orbital-motion celestial-mechanics satellites






share|cite|improve this question









New contributor




triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 9 hours ago









Qmechanic

108k122001253




108k122001253






New contributor




triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 10 hours ago









triple7triple7

183




183




New contributor




triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






triple7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    hyperphysics.phy-astr.gsu.edu/hbase/kepler.html#c6
    $endgroup$
    – Kyle Kanos
    9 hours ago










  • $begingroup$
    The equality only holds in certain units since its dimensionally inhomogeneous. In particular, if you use Earth years and the Earth-Sun distance (i.e. 1a.u.) then it's true, so it must be true in those specific units.
    $endgroup$
    – jacob1729
    7 hours ago






  • 1




    $begingroup$
    BTW, do you understand that $a$ is not altitude but rather distance from the center of the Earth?
    $endgroup$
    – G. Smith
    3 hours ago

















  • $begingroup$
    hyperphysics.phy-astr.gsu.edu/hbase/kepler.html#c6
    $endgroup$
    – Kyle Kanos
    9 hours ago










  • $begingroup$
    The equality only holds in certain units since its dimensionally inhomogeneous. In particular, if you use Earth years and the Earth-Sun distance (i.e. 1a.u.) then it's true, so it must be true in those specific units.
    $endgroup$
    – jacob1729
    7 hours ago






  • 1




    $begingroup$
    BTW, do you understand that $a$ is not altitude but rather distance from the center of the Earth?
    $endgroup$
    – G. Smith
    3 hours ago
















$begingroup$
hyperphysics.phy-astr.gsu.edu/hbase/kepler.html#c6
$endgroup$
– Kyle Kanos
9 hours ago




$begingroup$
hyperphysics.phy-astr.gsu.edu/hbase/kepler.html#c6
$endgroup$
– Kyle Kanos
9 hours ago












$begingroup$
The equality only holds in certain units since its dimensionally inhomogeneous. In particular, if you use Earth years and the Earth-Sun distance (i.e. 1a.u.) then it's true, so it must be true in those specific units.
$endgroup$
– jacob1729
7 hours ago




$begingroup$
The equality only holds in certain units since its dimensionally inhomogeneous. In particular, if you use Earth years and the Earth-Sun distance (i.e. 1a.u.) then it's true, so it must be true in those specific units.
$endgroup$
– jacob1729
7 hours ago




1




1




$begingroup$
BTW, do you understand that $a$ is not altitude but rather distance from the center of the Earth?
$endgroup$
– G. Smith
3 hours ago





$begingroup$
BTW, do you understand that $a$ is not altitude but rather distance from the center of the Earth?
$endgroup$
– G. Smith
3 hours ago











3 Answers
3






active

oldest

votes


















7












$begingroup$

that equality should be a proportional to sign. In particular, in SI, the squared period has units of seconds squared, and the semi-major radius of of the orbit cubed is in meters cubed, so they can't be equal.



Instead, I'd be checking whether $T^2/a^3$ is constant for different satellites orbiting the same object (Like the ISS and the moon, for example)






share|cite|improve this answer











$endgroup$








  • 6




    $begingroup$
    Ok, as I'm blind and use a screenreader, I didn't realise it was a proportion sign. And most sites only show images for formulas, which are inaccessible too. Also, I am assuming you use latec or math jacks for the symbols here, which also make the screen reader hang In a cycle. Could you give me a simple ASCII form of the distance given a period?
    $endgroup$
    – triple7
    9 hours ago






  • 3




    $begingroup$
    @triple7: Keplers law says that the square of the period divided by the cube of the distance is equal to a constant for every central body. so, t squared divided by a cubed should be the same for the ISS and for the moon. After Kepler, Newton was able to come up with a theoretical formula to predict what this constant should be, which is 4 * pi squared / (G * M), where G is Newton's constant, and M is the mass of the central body.
    $endgroup$
    – Jerry Schirmer
    9 hours ago






  • 1




    $begingroup$
    Yep, finally found it. Thanks
    $endgroup$
    – triple7
    9 hours ago


















2












$begingroup$

The general form of Kepler's period law is $T^2 = frac4pi^2G(M+m)a^3$. Often, we make the simplifying assumption that $M>>m$, so that $M+m approx M$.



Kepler's period law only takes the form $T^2 = a^3$ (forgetting about the units) when you use certain quantities- in this case, $M$ being solar mass, $T$ being an Earth year, and $a$ being an astronomical unit.



Try plugging into the equation for the mass of earth (and don't bother with the satellite mass) and use units of meters and seconds. See if you get the right result!






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Yes, I used seconds and meters. R would be planet radius and satellite altitude, and the numbers seem to correspond. I needed this parameter to calculate the distance between two points by lat long alt, so i’m subtracting earth’s radius to the result of the kepler equation. I just wish math reading blind wasn’t so convoluted :/
    $endgroup$
    – triple7
    8 mins ago


















0












$begingroup$

Kepler's third law claims that $p^2 propto a^3$. The equality sign you use is incorrect.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "151"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    triple7 is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f474399%2fkeplers-3rd-law-ratios-dont-fit-data%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    that equality should be a proportional to sign. In particular, in SI, the squared period has units of seconds squared, and the semi-major radius of of the orbit cubed is in meters cubed, so they can't be equal.



    Instead, I'd be checking whether $T^2/a^3$ is constant for different satellites orbiting the same object (Like the ISS and the moon, for example)






    share|cite|improve this answer











    $endgroup$








    • 6




      $begingroup$
      Ok, as I'm blind and use a screenreader, I didn't realise it was a proportion sign. And most sites only show images for formulas, which are inaccessible too. Also, I am assuming you use latec or math jacks for the symbols here, which also make the screen reader hang In a cycle. Could you give me a simple ASCII form of the distance given a period?
      $endgroup$
      – triple7
      9 hours ago






    • 3




      $begingroup$
      @triple7: Keplers law says that the square of the period divided by the cube of the distance is equal to a constant for every central body. so, t squared divided by a cubed should be the same for the ISS and for the moon. After Kepler, Newton was able to come up with a theoretical formula to predict what this constant should be, which is 4 * pi squared / (G * M), where G is Newton's constant, and M is the mass of the central body.
      $endgroup$
      – Jerry Schirmer
      9 hours ago






    • 1




      $begingroup$
      Yep, finally found it. Thanks
      $endgroup$
      – triple7
      9 hours ago















    7












    $begingroup$

    that equality should be a proportional to sign. In particular, in SI, the squared period has units of seconds squared, and the semi-major radius of of the orbit cubed is in meters cubed, so they can't be equal.



    Instead, I'd be checking whether $T^2/a^3$ is constant for different satellites orbiting the same object (Like the ISS and the moon, for example)






    share|cite|improve this answer











    $endgroup$








    • 6




      $begingroup$
      Ok, as I'm blind and use a screenreader, I didn't realise it was a proportion sign. And most sites only show images for formulas, which are inaccessible too. Also, I am assuming you use latec or math jacks for the symbols here, which also make the screen reader hang In a cycle. Could you give me a simple ASCII form of the distance given a period?
      $endgroup$
      – triple7
      9 hours ago






    • 3




      $begingroup$
      @triple7: Keplers law says that the square of the period divided by the cube of the distance is equal to a constant for every central body. so, t squared divided by a cubed should be the same for the ISS and for the moon. After Kepler, Newton was able to come up with a theoretical formula to predict what this constant should be, which is 4 * pi squared / (G * M), where G is Newton's constant, and M is the mass of the central body.
      $endgroup$
      – Jerry Schirmer
      9 hours ago






    • 1




      $begingroup$
      Yep, finally found it. Thanks
      $endgroup$
      – triple7
      9 hours ago













    7












    7








    7





    $begingroup$

    that equality should be a proportional to sign. In particular, in SI, the squared period has units of seconds squared, and the semi-major radius of of the orbit cubed is in meters cubed, so they can't be equal.



    Instead, I'd be checking whether $T^2/a^3$ is constant for different satellites orbiting the same object (Like the ISS and the moon, for example)






    share|cite|improve this answer











    $endgroup$



    that equality should be a proportional to sign. In particular, in SI, the squared period has units of seconds squared, and the semi-major radius of of the orbit cubed is in meters cubed, so they can't be equal.



    Instead, I'd be checking whether $T^2/a^3$ is constant for different satellites orbiting the same object (Like the ISS and the moon, for example)







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 9 hours ago

























    answered 9 hours ago









    Jerry SchirmerJerry Schirmer

    31.7k257107




    31.7k257107







    • 6




      $begingroup$
      Ok, as I'm blind and use a screenreader, I didn't realise it was a proportion sign. And most sites only show images for formulas, which are inaccessible too. Also, I am assuming you use latec or math jacks for the symbols here, which also make the screen reader hang In a cycle. Could you give me a simple ASCII form of the distance given a period?
      $endgroup$
      – triple7
      9 hours ago






    • 3




      $begingroup$
      @triple7: Keplers law says that the square of the period divided by the cube of the distance is equal to a constant for every central body. so, t squared divided by a cubed should be the same for the ISS and for the moon. After Kepler, Newton was able to come up with a theoretical formula to predict what this constant should be, which is 4 * pi squared / (G * M), where G is Newton's constant, and M is the mass of the central body.
      $endgroup$
      – Jerry Schirmer
      9 hours ago






    • 1




      $begingroup$
      Yep, finally found it. Thanks
      $endgroup$
      – triple7
      9 hours ago












    • 6




      $begingroup$
      Ok, as I'm blind and use a screenreader, I didn't realise it was a proportion sign. And most sites only show images for formulas, which are inaccessible too. Also, I am assuming you use latec or math jacks for the symbols here, which also make the screen reader hang In a cycle. Could you give me a simple ASCII form of the distance given a period?
      $endgroup$
      – triple7
      9 hours ago






    • 3




      $begingroup$
      @triple7: Keplers law says that the square of the period divided by the cube of the distance is equal to a constant for every central body. so, t squared divided by a cubed should be the same for the ISS and for the moon. After Kepler, Newton was able to come up with a theoretical formula to predict what this constant should be, which is 4 * pi squared / (G * M), where G is Newton's constant, and M is the mass of the central body.
      $endgroup$
      – Jerry Schirmer
      9 hours ago






    • 1




      $begingroup$
      Yep, finally found it. Thanks
      $endgroup$
      – triple7
      9 hours ago







    6




    6




    $begingroup$
    Ok, as I'm blind and use a screenreader, I didn't realise it was a proportion sign. And most sites only show images for formulas, which are inaccessible too. Also, I am assuming you use latec or math jacks for the symbols here, which also make the screen reader hang In a cycle. Could you give me a simple ASCII form of the distance given a period?
    $endgroup$
    – triple7
    9 hours ago




    $begingroup$
    Ok, as I'm blind and use a screenreader, I didn't realise it was a proportion sign. And most sites only show images for formulas, which are inaccessible too. Also, I am assuming you use latec or math jacks for the symbols here, which also make the screen reader hang In a cycle. Could you give me a simple ASCII form of the distance given a period?
    $endgroup$
    – triple7
    9 hours ago




    3




    3




    $begingroup$
    @triple7: Keplers law says that the square of the period divided by the cube of the distance is equal to a constant for every central body. so, t squared divided by a cubed should be the same for the ISS and for the moon. After Kepler, Newton was able to come up with a theoretical formula to predict what this constant should be, which is 4 * pi squared / (G * M), where G is Newton's constant, and M is the mass of the central body.
    $endgroup$
    – Jerry Schirmer
    9 hours ago




    $begingroup$
    @triple7: Keplers law says that the square of the period divided by the cube of the distance is equal to a constant for every central body. so, t squared divided by a cubed should be the same for the ISS and for the moon. After Kepler, Newton was able to come up with a theoretical formula to predict what this constant should be, which is 4 * pi squared / (G * M), where G is Newton's constant, and M is the mass of the central body.
    $endgroup$
    – Jerry Schirmer
    9 hours ago




    1




    1




    $begingroup$
    Yep, finally found it. Thanks
    $endgroup$
    – triple7
    9 hours ago




    $begingroup$
    Yep, finally found it. Thanks
    $endgroup$
    – triple7
    9 hours ago











    2












    $begingroup$

    The general form of Kepler's period law is $T^2 = frac4pi^2G(M+m)a^3$. Often, we make the simplifying assumption that $M>>m$, so that $M+m approx M$.



    Kepler's period law only takes the form $T^2 = a^3$ (forgetting about the units) when you use certain quantities- in this case, $M$ being solar mass, $T$ being an Earth year, and $a$ being an astronomical unit.



    Try plugging into the equation for the mass of earth (and don't bother with the satellite mass) and use units of meters and seconds. See if you get the right result!






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Yes, I used seconds and meters. R would be planet radius and satellite altitude, and the numbers seem to correspond. I needed this parameter to calculate the distance between two points by lat long alt, so i’m subtracting earth’s radius to the result of the kepler equation. I just wish math reading blind wasn’t so convoluted :/
      $endgroup$
      – triple7
      8 mins ago















    2












    $begingroup$

    The general form of Kepler's period law is $T^2 = frac4pi^2G(M+m)a^3$. Often, we make the simplifying assumption that $M>>m$, so that $M+m approx M$.



    Kepler's period law only takes the form $T^2 = a^3$ (forgetting about the units) when you use certain quantities- in this case, $M$ being solar mass, $T$ being an Earth year, and $a$ being an astronomical unit.



    Try plugging into the equation for the mass of earth (and don't bother with the satellite mass) and use units of meters and seconds. See if you get the right result!






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Yes, I used seconds and meters. R would be planet radius and satellite altitude, and the numbers seem to correspond. I needed this parameter to calculate the distance between two points by lat long alt, so i’m subtracting earth’s radius to the result of the kepler equation. I just wish math reading blind wasn’t so convoluted :/
      $endgroup$
      – triple7
      8 mins ago













    2












    2








    2





    $begingroup$

    The general form of Kepler's period law is $T^2 = frac4pi^2G(M+m)a^3$. Often, we make the simplifying assumption that $M>>m$, so that $M+m approx M$.



    Kepler's period law only takes the form $T^2 = a^3$ (forgetting about the units) when you use certain quantities- in this case, $M$ being solar mass, $T$ being an Earth year, and $a$ being an astronomical unit.



    Try plugging into the equation for the mass of earth (and don't bother with the satellite mass) and use units of meters and seconds. See if you get the right result!






    share|cite|improve this answer











    $endgroup$



    The general form of Kepler's period law is $T^2 = frac4pi^2G(M+m)a^3$. Often, we make the simplifying assumption that $M>>m$, so that $M+m approx M$.



    Kepler's period law only takes the form $T^2 = a^3$ (forgetting about the units) when you use certain quantities- in this case, $M$ being solar mass, $T$ being an Earth year, and $a$ being an astronomical unit.



    Try plugging into the equation for the mass of earth (and don't bother with the satellite mass) and use units of meters and seconds. See if you get the right result!







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 9 hours ago

























    answered 9 hours ago









    swickrotationswickrotation

    715




    715







    • 1




      $begingroup$
      Yes, I used seconds and meters. R would be planet radius and satellite altitude, and the numbers seem to correspond. I needed this parameter to calculate the distance between two points by lat long alt, so i’m subtracting earth’s radius to the result of the kepler equation. I just wish math reading blind wasn’t so convoluted :/
      $endgroup$
      – triple7
      8 mins ago












    • 1




      $begingroup$
      Yes, I used seconds and meters. R would be planet radius and satellite altitude, and the numbers seem to correspond. I needed this parameter to calculate the distance between two points by lat long alt, so i’m subtracting earth’s radius to the result of the kepler equation. I just wish math reading blind wasn’t so convoluted :/
      $endgroup$
      – triple7
      8 mins ago







    1




    1




    $begingroup$
    Yes, I used seconds and meters. R would be planet radius and satellite altitude, and the numbers seem to correspond. I needed this parameter to calculate the distance between two points by lat long alt, so i’m subtracting earth’s radius to the result of the kepler equation. I just wish math reading blind wasn’t so convoluted :/
    $endgroup$
    – triple7
    8 mins ago




    $begingroup$
    Yes, I used seconds and meters. R would be planet radius and satellite altitude, and the numbers seem to correspond. I needed this parameter to calculate the distance between two points by lat long alt, so i’m subtracting earth’s radius to the result of the kepler equation. I just wish math reading blind wasn’t so convoluted :/
    $endgroup$
    – triple7
    8 mins ago











    0












    $begingroup$

    Kepler's third law claims that $p^2 propto a^3$. The equality sign you use is incorrect.






    share|cite|improve this answer









    $endgroup$

















      0












      $begingroup$

      Kepler's third law claims that $p^2 propto a^3$. The equality sign you use is incorrect.






      share|cite|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        Kepler's third law claims that $p^2 propto a^3$. The equality sign you use is incorrect.






        share|cite|improve this answer









        $endgroup$



        Kepler's third law claims that $p^2 propto a^3$. The equality sign you use is incorrect.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 9 hours ago









        my2ctsmy2cts

        5,9642719




        5,9642719




















            triple7 is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            triple7 is a new contributor. Be nice, and check out our Code of Conduct.












            triple7 is a new contributor. Be nice, and check out our Code of Conduct.











            triple7 is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f474399%2fkeplers-3rd-law-ratios-dont-fit-data%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

            Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

            Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр