How to show the equivalence between the regularized regression and their constraint formulas using KKTThe proof of equivalent formulas of ridge regressionRidge regression formulation as constrained versus penalized: How are they equivalent?Equivalence between Elastic Net formulationsCalculating $R^2$ for Elastic NetEquivalence between Elastic Net formulationsWhy is “relaxed lasso” different from standard lasso?Bridge penalty vs. Elastic Net regularizationLogistic regression coefficients are wildlyHow to explain differences in formulas of ridge regression, lasso, and elastic netIntuition Behind the Elastic Net PenaltyRegularized Logistic Regression: Lasso vs. Ridge vs. Elastic NetCan you predict the residuals from a regularized regression using the same data?Elastic Net and collinearity

I'm flying to France today and my passport expires in less than 2 months

What's the point of deactivating Num Lock on login screens?

Why are electrically insulating heatsinks so rare? Is it just cost?

Stopping power of mountain vs road bike

A reference to a well-known characterization of scattered compact spaces

1960's book about a plague that kills all white people

Theorems that impeded progress

When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?

Why can't we play rap on piano?

Do I have a twin with permutated remainders?

Is the Joker left-handed?

What mechanic is there to disable a threat instead of killing it?

Today is the Center

What is the intuition behind short exact sequences of groups; in particular, what is the intuition behind group extensions?

Is it legal for company to use my work email to pretend I still work there?

Why does Kotter return in Welcome Back Kotter

Doing something right before you need it - expression for this?

Were any external disk drives stacked vertically?

What do you call someone who asks many questions?

How to take photos in burst mode, without vibration?

How to prevent "they're falling in love" trope

Why is Collection not simply treated as Collection<?>

How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?

90's TV series where a boy goes to another dimension through portal near power lines



How to show the equivalence between the regularized regression and their constraint formulas using KKT


The proof of equivalent formulas of ridge regressionRidge regression formulation as constrained versus penalized: How are they equivalent?Equivalence between Elastic Net formulationsCalculating $R^2$ for Elastic NetEquivalence between Elastic Net formulationsWhy is “relaxed lasso” different from standard lasso?Bridge penalty vs. Elastic Net regularizationLogistic regression coefficients are wildlyHow to explain differences in formulas of ridge regression, lasso, and elastic netIntuition Behind the Elastic Net PenaltyRegularized Logistic Regression: Lasso vs. Ridge vs. Elastic NetCan you predict the residuals from a regularized regression using the same data?Elastic Net and collinearity






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








6












$begingroup$


According to the following references



Book 1, Book 2 and paper.



It has been mentioned that there is an equivalence between the regularized regression (Ridge, LASSO and Elastic Net) and their constraint formulas.



I have also looked at Cross Validated 1, and Cross Validated 2, but I can not see a clear answer show that equivalence or logic.



My question is how to show that equivalence using Karush–Kuhn–Tucker (KKT)?



These formulas are for Ridge regression.



Ridge



These formulas are for LASSO regression.



|LASSO



These formulas are for Elastic Net regression.



Elastic Net



NOTE



This question is not homework. It is only to increase my comprehension of this topic.










share|cite|improve this question











$endgroup$


















    6












    $begingroup$


    According to the following references



    Book 1, Book 2 and paper.



    It has been mentioned that there is an equivalence between the regularized regression (Ridge, LASSO and Elastic Net) and their constraint formulas.



    I have also looked at Cross Validated 1, and Cross Validated 2, but I can not see a clear answer show that equivalence or logic.



    My question is how to show that equivalence using Karush–Kuhn–Tucker (KKT)?



    These formulas are for Ridge regression.



    Ridge



    These formulas are for LASSO regression.



    |LASSO



    These formulas are for Elastic Net regression.



    Elastic Net



    NOTE



    This question is not homework. It is only to increase my comprehension of this topic.










    share|cite|improve this question











    $endgroup$














      6












      6








      6


      2



      $begingroup$


      According to the following references



      Book 1, Book 2 and paper.



      It has been mentioned that there is an equivalence between the regularized regression (Ridge, LASSO and Elastic Net) and their constraint formulas.



      I have also looked at Cross Validated 1, and Cross Validated 2, but I can not see a clear answer show that equivalence or logic.



      My question is how to show that equivalence using Karush–Kuhn–Tucker (KKT)?



      These formulas are for Ridge regression.



      Ridge



      These formulas are for LASSO regression.



      |LASSO



      These formulas are for Elastic Net regression.



      Elastic Net



      NOTE



      This question is not homework. It is only to increase my comprehension of this topic.










      share|cite|improve this question











      $endgroup$




      According to the following references



      Book 1, Book 2 and paper.



      It has been mentioned that there is an equivalence between the regularized regression (Ridge, LASSO and Elastic Net) and their constraint formulas.



      I have also looked at Cross Validated 1, and Cross Validated 2, but I can not see a clear answer show that equivalence or logic.



      My question is how to show that equivalence using Karush–Kuhn–Tucker (KKT)?



      These formulas are for Ridge regression.



      Ridge



      These formulas are for LASSO regression.



      |LASSO



      These formulas are for Elastic Net regression.



      Elastic Net



      NOTE



      This question is not homework. It is only to increase my comprehension of this topic.







      regression optimization lasso ridge-regression elastic-net






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 5 hours ago







      jeza

















      asked 11 hours ago









      jezajeza

      470420




      470420




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
          $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu left + alpha sum_j=1^p beta_j^2right$$
          where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



          However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
          $$max_x f(x) + lambda g(x)$$
          We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
          $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
          So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "65"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401212%2fhow-to-show-the-equivalence-between-the-regularized-regression-and-their-constra%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
            $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu left + alpha sum_j=1^p beta_j^2right$$
            where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



            However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
            $$max_x f(x) + lambda g(x)$$
            We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
            $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
            So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.






            share|cite|improve this answer











            $endgroup$

















              6












              $begingroup$

              The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
              $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu left + alpha sum_j=1^p beta_j^2right$$
              where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



              However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
              $$max_x f(x) + lambda g(x)$$
              We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
              $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
              So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.






              share|cite|improve this answer











              $endgroup$















                6












                6








                6





                $begingroup$

                The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
                $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu left + alpha sum_j=1^p beta_j^2right$$
                where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



                However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
                $$max_x f(x) + lambda g(x)$$
                We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
                $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
                So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.






                share|cite|improve this answer











                $endgroup$



                The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
                $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu left + alpha sum_j=1^p beta_j^2right$$
                where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



                However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
                $$max_x f(x) + lambda g(x)$$
                We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
                $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
                So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 9 hours ago

























                answered 11 hours ago









                stats_modelstats_model

                20216




                20216



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401212%2fhow-to-show-the-equivalence-between-the-regularized-regression-and-their-constra%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр