Are there any examples of a variable being normally distributed that is *not* due to the Central Limit Theorem?Central limit theorem and the law of large numbersCentral limit theorem when the mean is not constantWhy does the central limit theorem work with a single sample?The central limit theorem, What it meansUnderstanding the Central Limit Theorem (CLT)How does the Central Limit Theorem show that the Binomial Distribution is approximately Normal for a large value of n?For which parameters does the Central Limit Theorem work?What distributions don't follow the central limit theorem?How can the central limit theorem hold for distributions which have limits on the random variable?Are there any examples of where the central limit theorem does not hold?

Are there any examples of a variable being normally distributed that is *not* due to the Central Limit Theorem?

Would Slavery Reparations be considered Bills of Attainder and hence Illegal?

Why didn't Miles's spider sense work before?

Why do bosons tend to occupy the same state?

In 'Revenger,' what does 'cove' come from?

Size of subfigure fitting its content (tikzpicture)

Is there a hemisphere-neutral way of specifying a season?

Gatling : Performance testing tool

Zip/Tar file compressed to larger size?

Bullying boss launched a smear campaign and made me unemployable

Why are the 737's rear doors unusable in a water landing?

Mathematica command that allows it to read my intentions

Am I breaking OOP practice with this architecture?

How dangerous is XSS?

Do UK voters know if their MP will be the Speaker of the House?

iPad being using in wall mount battery swollen

How badly should I try to prevent a user from XSSing themselves?

What killed these X2 caps?

What reasons are there for a Capitalist to oppose a 100% inheritance tax?

Avoiding direct proof while writing proof by induction

I would say: "You are another teacher", but she is a woman and I am a man

One verb to replace 'be a member of' a club

Is there an expression that means doing something right before you will need it rather than doing it in case you might need it?

Venezuelan girlfriend wants to travel the USA to be with me. What is the process?



Are there any examples of a variable being normally distributed that is *not* due to the Central Limit Theorem?


Central limit theorem and the law of large numbersCentral limit theorem when the mean is not constantWhy does the central limit theorem work with a single sample?The central limit theorem, What it meansUnderstanding the Central Limit Theorem (CLT)How does the Central Limit Theorem show that the Binomial Distribution is approximately Normal for a large value of n?For which parameters does the Central Limit Theorem work?What distributions don't follow the central limit theorem?How can the central limit theorem hold for distributions which have limits on the random variable?Are there any examples of where the central limit theorem does not hold?













9












$begingroup$


The normal distribution seems unintuitive until you learn the CLT, which explains why it is so prevalent in real life. But does it ever arise as the "natural" distribution for some quantity?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    The physical theory of diffusion, to the extent it is applicable to any system, predicts Normal distributions of quantities (like temperature or concentration) that originate at a point. Indeed, a great many systems are diffusive (options prices, particle transport in homogeneous media, etc.), suggesting that examples are abundant assuming one is not so naive as to suppose that a Normal distribution must hold exactly out to unrealistically large or small values--that would be a misunderstanding of all physical theory.
    $endgroup$
    – whuber
    7 hours ago










  • $begingroup$
    The normal distribution seems unintuitive until you learn that it maximizes the entropy under the constraint of fixed variance.
    $endgroup$
    – leonbloy
    2 hours ago















9












$begingroup$


The normal distribution seems unintuitive until you learn the CLT, which explains why it is so prevalent in real life. But does it ever arise as the "natural" distribution for some quantity?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    The physical theory of diffusion, to the extent it is applicable to any system, predicts Normal distributions of quantities (like temperature or concentration) that originate at a point. Indeed, a great many systems are diffusive (options prices, particle transport in homogeneous media, etc.), suggesting that examples are abundant assuming one is not so naive as to suppose that a Normal distribution must hold exactly out to unrealistically large or small values--that would be a misunderstanding of all physical theory.
    $endgroup$
    – whuber
    7 hours ago










  • $begingroup$
    The normal distribution seems unintuitive until you learn that it maximizes the entropy under the constraint of fixed variance.
    $endgroup$
    – leonbloy
    2 hours ago













9












9








9


3



$begingroup$


The normal distribution seems unintuitive until you learn the CLT, which explains why it is so prevalent in real life. But does it ever arise as the "natural" distribution for some quantity?










share|cite|improve this question









$endgroup$




The normal distribution seems unintuitive until you learn the CLT, which explains why it is so prevalent in real life. But does it ever arise as the "natural" distribution for some quantity?







normal-distribution central-limit-theorem






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 8 hours ago









gardenheadgardenhead

1663




1663







  • 3




    $begingroup$
    The physical theory of diffusion, to the extent it is applicable to any system, predicts Normal distributions of quantities (like temperature or concentration) that originate at a point. Indeed, a great many systems are diffusive (options prices, particle transport in homogeneous media, etc.), suggesting that examples are abundant assuming one is not so naive as to suppose that a Normal distribution must hold exactly out to unrealistically large or small values--that would be a misunderstanding of all physical theory.
    $endgroup$
    – whuber
    7 hours ago










  • $begingroup$
    The normal distribution seems unintuitive until you learn that it maximizes the entropy under the constraint of fixed variance.
    $endgroup$
    – leonbloy
    2 hours ago












  • 3




    $begingroup$
    The physical theory of diffusion, to the extent it is applicable to any system, predicts Normal distributions of quantities (like temperature or concentration) that originate at a point. Indeed, a great many systems are diffusive (options prices, particle transport in homogeneous media, etc.), suggesting that examples are abundant assuming one is not so naive as to suppose that a Normal distribution must hold exactly out to unrealistically large or small values--that would be a misunderstanding of all physical theory.
    $endgroup$
    – whuber
    7 hours ago










  • $begingroup$
    The normal distribution seems unintuitive until you learn that it maximizes the entropy under the constraint of fixed variance.
    $endgroup$
    – leonbloy
    2 hours ago







3




3




$begingroup$
The physical theory of diffusion, to the extent it is applicable to any system, predicts Normal distributions of quantities (like temperature or concentration) that originate at a point. Indeed, a great many systems are diffusive (options prices, particle transport in homogeneous media, etc.), suggesting that examples are abundant assuming one is not so naive as to suppose that a Normal distribution must hold exactly out to unrealistically large or small values--that would be a misunderstanding of all physical theory.
$endgroup$
– whuber
7 hours ago




$begingroup$
The physical theory of diffusion, to the extent it is applicable to any system, predicts Normal distributions of quantities (like temperature or concentration) that originate at a point. Indeed, a great many systems are diffusive (options prices, particle transport in homogeneous media, etc.), suggesting that examples are abundant assuming one is not so naive as to suppose that a Normal distribution must hold exactly out to unrealistically large or small values--that would be a misunderstanding of all physical theory.
$endgroup$
– whuber
7 hours ago












$begingroup$
The normal distribution seems unintuitive until you learn that it maximizes the entropy under the constraint of fixed variance.
$endgroup$
– leonbloy
2 hours ago




$begingroup$
The normal distribution seems unintuitive until you learn that it maximizes the entropy under the constraint of fixed variance.
$endgroup$
– leonbloy
2 hours ago










2 Answers
2






active

oldest

votes


















8












$begingroup$

To an extent I think this this may be a philosophical issue as much as a statistical one.



A lot of naturally occurring phenomena are approximately normally distributed. One can argue
whether the underlying cause of that may be something like the CLT:



  • Heights of people may be considered as the the sum of many smaller causes (perhaps independent, unlikely identically distributed): lengths of various bones, or results of various gene expressions, or results of many dietary
    influences, or some combination of all of the above.


  • Test scores may be considered as the sums of scores on many individual test questions (possibly identically distributed, unlikely entirely independent).


  • Distance a particle travels in one dimension as a result of Brownian motion in a fluid: Motion may be considered abstractly as a random walk resulting from IID random hits by molecules.


One example where the CLT is not necessarily involved is the dispersion of shots around a bull's eye: The distance from the bull's eye can be modeled as a Rayleigh
distribution (proportional to square root of chi-sq with 2 DF) and the counterclockwise angle from the the positive horizontal axis can be modeled as uniform on $(0, 2pi).$ Then after changing from polar to rectangular coordinates, distances in horizontal (x) and
vertical (y) directions turn out to be uncorrelated bivariate normal. [This is the essence of the Box-Muller transformation, which you can google.] However, the normal x and y coordinates might be considered as the sum of many small inaccuracies in targeting, which might justify a CLT-related mechanism in the background.



In a historical sense, the widespread use of normal (Gaussian) distributions instead of double-exponential (Laplace) distributions to model astronomical observations may be partly due to the CLT. In the early days of modeling errors of such observations, there was a debate between Gauss and Laplace, each arguing for his own favorite distribution. For various reasons, the normal model has won out. One can argue that one reason for the eventual success of the normal distribution was mathematical convenience based on normal limits of the CLT. This seems to be true even when it is unclear which family of distributions provides the better fit. (Even now, there are still astronomers who feel that the "one best observation" made by
a meticulous, respected astronomer is bound to be a better value than than the average of many observations made by presumably less-gifted observers. In effect, they would prefer no intervention at all by statisticians.)






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Yep. Still fixing typos. Thanks for noticing this one. Same error in 'test scores' also fixed.
    $endgroup$
    – BruceET
    7 hours ago



















-2












$begingroup$

Lots of naturally occurring variables are normally distributed. Heights of humans? Size of animal colonies?






share|cite|improve this answer








New contributor




Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$








  • 4




    $begingroup$
    But are those examples really normally distributed, or is that just a useful approximation? True normally distributed random variables take negative values with positive probability.
    $endgroup$
    – Artem Mavrin
    8 hours ago






  • 1




    $begingroup$
    @Happy Actually neither example given here is normally distributed because the support of the normal distribution is -infinity to +infinity and the examples given can never be zero or less. In each case the normal distribution might be a useful approximation, but not if you were interested in the tails of the distribution.
    $endgroup$
    – JeremyC
    8 hours ago






  • 2




    $begingroup$
    Human height is the result of the sum of (approximately) independent genes, so they actually are due to the CLT.
    $endgroup$
    – gardenhead
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: getting a negative height would be something like 8+ standard deviations. If one objects to a normal approximation not being valid because it places zero probability mass beyond 8 sd's, you might as well also complain that a truly Normally distributed value is irrational with probability 1, yet all our measurements are rational numbers.
    $endgroup$
    – Cliff AB
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: well, if the question is any thing exactly normally distributed, that answer is simple: no. Not even rnorm(1). Same with all distributions, other than multinomial.
    $endgroup$
    – Cliff AB
    7 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "65"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401055%2fare-there-any-examples-of-a-variable-being-normally-distributed-that-is-not-du%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









8












$begingroup$

To an extent I think this this may be a philosophical issue as much as a statistical one.



A lot of naturally occurring phenomena are approximately normally distributed. One can argue
whether the underlying cause of that may be something like the CLT:



  • Heights of people may be considered as the the sum of many smaller causes (perhaps independent, unlikely identically distributed): lengths of various bones, or results of various gene expressions, or results of many dietary
    influences, or some combination of all of the above.


  • Test scores may be considered as the sums of scores on many individual test questions (possibly identically distributed, unlikely entirely independent).


  • Distance a particle travels in one dimension as a result of Brownian motion in a fluid: Motion may be considered abstractly as a random walk resulting from IID random hits by molecules.


One example where the CLT is not necessarily involved is the dispersion of shots around a bull's eye: The distance from the bull's eye can be modeled as a Rayleigh
distribution (proportional to square root of chi-sq with 2 DF) and the counterclockwise angle from the the positive horizontal axis can be modeled as uniform on $(0, 2pi).$ Then after changing from polar to rectangular coordinates, distances in horizontal (x) and
vertical (y) directions turn out to be uncorrelated bivariate normal. [This is the essence of the Box-Muller transformation, which you can google.] However, the normal x and y coordinates might be considered as the sum of many small inaccuracies in targeting, which might justify a CLT-related mechanism in the background.



In a historical sense, the widespread use of normal (Gaussian) distributions instead of double-exponential (Laplace) distributions to model astronomical observations may be partly due to the CLT. In the early days of modeling errors of such observations, there was a debate between Gauss and Laplace, each arguing for his own favorite distribution. For various reasons, the normal model has won out. One can argue that one reason for the eventual success of the normal distribution was mathematical convenience based on normal limits of the CLT. This seems to be true even when it is unclear which family of distributions provides the better fit. (Even now, there are still astronomers who feel that the "one best observation" made by
a meticulous, respected astronomer is bound to be a better value than than the average of many observations made by presumably less-gifted observers. In effect, they would prefer no intervention at all by statisticians.)






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Yep. Still fixing typos. Thanks for noticing this one. Same error in 'test scores' also fixed.
    $endgroup$
    – BruceET
    7 hours ago
















8












$begingroup$

To an extent I think this this may be a philosophical issue as much as a statistical one.



A lot of naturally occurring phenomena are approximately normally distributed. One can argue
whether the underlying cause of that may be something like the CLT:



  • Heights of people may be considered as the the sum of many smaller causes (perhaps independent, unlikely identically distributed): lengths of various bones, or results of various gene expressions, or results of many dietary
    influences, or some combination of all of the above.


  • Test scores may be considered as the sums of scores on many individual test questions (possibly identically distributed, unlikely entirely independent).


  • Distance a particle travels in one dimension as a result of Brownian motion in a fluid: Motion may be considered abstractly as a random walk resulting from IID random hits by molecules.


One example where the CLT is not necessarily involved is the dispersion of shots around a bull's eye: The distance from the bull's eye can be modeled as a Rayleigh
distribution (proportional to square root of chi-sq with 2 DF) and the counterclockwise angle from the the positive horizontal axis can be modeled as uniform on $(0, 2pi).$ Then after changing from polar to rectangular coordinates, distances in horizontal (x) and
vertical (y) directions turn out to be uncorrelated bivariate normal. [This is the essence of the Box-Muller transformation, which you can google.] However, the normal x and y coordinates might be considered as the sum of many small inaccuracies in targeting, which might justify a CLT-related mechanism in the background.



In a historical sense, the widespread use of normal (Gaussian) distributions instead of double-exponential (Laplace) distributions to model astronomical observations may be partly due to the CLT. In the early days of modeling errors of such observations, there was a debate between Gauss and Laplace, each arguing for his own favorite distribution. For various reasons, the normal model has won out. One can argue that one reason for the eventual success of the normal distribution was mathematical convenience based on normal limits of the CLT. This seems to be true even when it is unclear which family of distributions provides the better fit. (Even now, there are still astronomers who feel that the "one best observation" made by
a meticulous, respected astronomer is bound to be a better value than than the average of many observations made by presumably less-gifted observers. In effect, they would prefer no intervention at all by statisticians.)






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Yep. Still fixing typos. Thanks for noticing this one. Same error in 'test scores' also fixed.
    $endgroup$
    – BruceET
    7 hours ago














8












8








8





$begingroup$

To an extent I think this this may be a philosophical issue as much as a statistical one.



A lot of naturally occurring phenomena are approximately normally distributed. One can argue
whether the underlying cause of that may be something like the CLT:



  • Heights of people may be considered as the the sum of many smaller causes (perhaps independent, unlikely identically distributed): lengths of various bones, or results of various gene expressions, or results of many dietary
    influences, or some combination of all of the above.


  • Test scores may be considered as the sums of scores on many individual test questions (possibly identically distributed, unlikely entirely independent).


  • Distance a particle travels in one dimension as a result of Brownian motion in a fluid: Motion may be considered abstractly as a random walk resulting from IID random hits by molecules.


One example where the CLT is not necessarily involved is the dispersion of shots around a bull's eye: The distance from the bull's eye can be modeled as a Rayleigh
distribution (proportional to square root of chi-sq with 2 DF) and the counterclockwise angle from the the positive horizontal axis can be modeled as uniform on $(0, 2pi).$ Then after changing from polar to rectangular coordinates, distances in horizontal (x) and
vertical (y) directions turn out to be uncorrelated bivariate normal. [This is the essence of the Box-Muller transformation, which you can google.] However, the normal x and y coordinates might be considered as the sum of many small inaccuracies in targeting, which might justify a CLT-related mechanism in the background.



In a historical sense, the widespread use of normal (Gaussian) distributions instead of double-exponential (Laplace) distributions to model astronomical observations may be partly due to the CLT. In the early days of modeling errors of such observations, there was a debate between Gauss and Laplace, each arguing for his own favorite distribution. For various reasons, the normal model has won out. One can argue that one reason for the eventual success of the normal distribution was mathematical convenience based on normal limits of the CLT. This seems to be true even when it is unclear which family of distributions provides the better fit. (Even now, there are still astronomers who feel that the "one best observation" made by
a meticulous, respected astronomer is bound to be a better value than than the average of many observations made by presumably less-gifted observers. In effect, they would prefer no intervention at all by statisticians.)






share|cite|improve this answer











$endgroup$



To an extent I think this this may be a philosophical issue as much as a statistical one.



A lot of naturally occurring phenomena are approximately normally distributed. One can argue
whether the underlying cause of that may be something like the CLT:



  • Heights of people may be considered as the the sum of many smaller causes (perhaps independent, unlikely identically distributed): lengths of various bones, or results of various gene expressions, or results of many dietary
    influences, or some combination of all of the above.


  • Test scores may be considered as the sums of scores on many individual test questions (possibly identically distributed, unlikely entirely independent).


  • Distance a particle travels in one dimension as a result of Brownian motion in a fluid: Motion may be considered abstractly as a random walk resulting from IID random hits by molecules.


One example where the CLT is not necessarily involved is the dispersion of shots around a bull's eye: The distance from the bull's eye can be modeled as a Rayleigh
distribution (proportional to square root of chi-sq with 2 DF) and the counterclockwise angle from the the positive horizontal axis can be modeled as uniform on $(0, 2pi).$ Then after changing from polar to rectangular coordinates, distances in horizontal (x) and
vertical (y) directions turn out to be uncorrelated bivariate normal. [This is the essence of the Box-Muller transformation, which you can google.] However, the normal x and y coordinates might be considered as the sum of many small inaccuracies in targeting, which might justify a CLT-related mechanism in the background.



In a historical sense, the widespread use of normal (Gaussian) distributions instead of double-exponential (Laplace) distributions to model astronomical observations may be partly due to the CLT. In the early days of modeling errors of such observations, there was a debate between Gauss and Laplace, each arguing for his own favorite distribution. For various reasons, the normal model has won out. One can argue that one reason for the eventual success of the normal distribution was mathematical convenience based on normal limits of the CLT. This seems to be true even when it is unclear which family of distributions provides the better fit. (Even now, there are still astronomers who feel that the "one best observation" made by
a meticulous, respected astronomer is bound to be a better value than than the average of many observations made by presumably less-gifted observers. In effect, they would prefer no intervention at all by statisticians.)







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 4 hours ago

























answered 7 hours ago









BruceETBruceET

6,2281720




6,2281720











  • $begingroup$
    Yep. Still fixing typos. Thanks for noticing this one. Same error in 'test scores' also fixed.
    $endgroup$
    – BruceET
    7 hours ago

















  • $begingroup$
    Yep. Still fixing typos. Thanks for noticing this one. Same error in 'test scores' also fixed.
    $endgroup$
    – BruceET
    7 hours ago
















$begingroup$
Yep. Still fixing typos. Thanks for noticing this one. Same error in 'test scores' also fixed.
$endgroup$
– BruceET
7 hours ago





$begingroup$
Yep. Still fixing typos. Thanks for noticing this one. Same error in 'test scores' also fixed.
$endgroup$
– BruceET
7 hours ago














-2












$begingroup$

Lots of naturally occurring variables are normally distributed. Heights of humans? Size of animal colonies?






share|cite|improve this answer








New contributor




Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$








  • 4




    $begingroup$
    But are those examples really normally distributed, or is that just a useful approximation? True normally distributed random variables take negative values with positive probability.
    $endgroup$
    – Artem Mavrin
    8 hours ago






  • 1




    $begingroup$
    @Happy Actually neither example given here is normally distributed because the support of the normal distribution is -infinity to +infinity and the examples given can never be zero or less. In each case the normal distribution might be a useful approximation, but not if you were interested in the tails of the distribution.
    $endgroup$
    – JeremyC
    8 hours ago






  • 2




    $begingroup$
    Human height is the result of the sum of (approximately) independent genes, so they actually are due to the CLT.
    $endgroup$
    – gardenhead
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: getting a negative height would be something like 8+ standard deviations. If one objects to a normal approximation not being valid because it places zero probability mass beyond 8 sd's, you might as well also complain that a truly Normally distributed value is irrational with probability 1, yet all our measurements are rational numbers.
    $endgroup$
    – Cliff AB
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: well, if the question is any thing exactly normally distributed, that answer is simple: no. Not even rnorm(1). Same with all distributions, other than multinomial.
    $endgroup$
    – Cliff AB
    7 hours ago















-2












$begingroup$

Lots of naturally occurring variables are normally distributed. Heights of humans? Size of animal colonies?






share|cite|improve this answer








New contributor




Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$








  • 4




    $begingroup$
    But are those examples really normally distributed, or is that just a useful approximation? True normally distributed random variables take negative values with positive probability.
    $endgroup$
    – Artem Mavrin
    8 hours ago






  • 1




    $begingroup$
    @Happy Actually neither example given here is normally distributed because the support of the normal distribution is -infinity to +infinity and the examples given can never be zero or less. In each case the normal distribution might be a useful approximation, but not if you were interested in the tails of the distribution.
    $endgroup$
    – JeremyC
    8 hours ago






  • 2




    $begingroup$
    Human height is the result of the sum of (approximately) independent genes, so they actually are due to the CLT.
    $endgroup$
    – gardenhead
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: getting a negative height would be something like 8+ standard deviations. If one objects to a normal approximation not being valid because it places zero probability mass beyond 8 sd's, you might as well also complain that a truly Normally distributed value is irrational with probability 1, yet all our measurements are rational numbers.
    $endgroup$
    – Cliff AB
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: well, if the question is any thing exactly normally distributed, that answer is simple: no. Not even rnorm(1). Same with all distributions, other than multinomial.
    $endgroup$
    – Cliff AB
    7 hours ago













-2












-2








-2





$begingroup$

Lots of naturally occurring variables are normally distributed. Heights of humans? Size of animal colonies?






share|cite|improve this answer








New contributor




Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



Lots of naturally occurring variables are normally distributed. Heights of humans? Size of animal colonies?







share|cite|improve this answer








New contributor




Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this answer



share|cite|improve this answer






New contributor




Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 8 hours ago









HappyHappy

52




52




New contributor




Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Happy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 4




    $begingroup$
    But are those examples really normally distributed, or is that just a useful approximation? True normally distributed random variables take negative values with positive probability.
    $endgroup$
    – Artem Mavrin
    8 hours ago






  • 1




    $begingroup$
    @Happy Actually neither example given here is normally distributed because the support of the normal distribution is -infinity to +infinity and the examples given can never be zero or less. In each case the normal distribution might be a useful approximation, but not if you were interested in the tails of the distribution.
    $endgroup$
    – JeremyC
    8 hours ago






  • 2




    $begingroup$
    Human height is the result of the sum of (approximately) independent genes, so they actually are due to the CLT.
    $endgroup$
    – gardenhead
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: getting a negative height would be something like 8+ standard deviations. If one objects to a normal approximation not being valid because it places zero probability mass beyond 8 sd's, you might as well also complain that a truly Normally distributed value is irrational with probability 1, yet all our measurements are rational numbers.
    $endgroup$
    – Cliff AB
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: well, if the question is any thing exactly normally distributed, that answer is simple: no. Not even rnorm(1). Same with all distributions, other than multinomial.
    $endgroup$
    – Cliff AB
    7 hours ago












  • 4




    $begingroup$
    But are those examples really normally distributed, or is that just a useful approximation? True normally distributed random variables take negative values with positive probability.
    $endgroup$
    – Artem Mavrin
    8 hours ago






  • 1




    $begingroup$
    @Happy Actually neither example given here is normally distributed because the support of the normal distribution is -infinity to +infinity and the examples given can never be zero or less. In each case the normal distribution might be a useful approximation, but not if you were interested in the tails of the distribution.
    $endgroup$
    – JeremyC
    8 hours ago






  • 2




    $begingroup$
    Human height is the result of the sum of (approximately) independent genes, so they actually are due to the CLT.
    $endgroup$
    – gardenhead
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: getting a negative height would be something like 8+ standard deviations. If one objects to a normal approximation not being valid because it places zero probability mass beyond 8 sd's, you might as well also complain that a truly Normally distributed value is irrational with probability 1, yet all our measurements are rational numbers.
    $endgroup$
    – Cliff AB
    7 hours ago






  • 1




    $begingroup$
    @ArtemMavrin: well, if the question is any thing exactly normally distributed, that answer is simple: no. Not even rnorm(1). Same with all distributions, other than multinomial.
    $endgroup$
    – Cliff AB
    7 hours ago







4




4




$begingroup$
But are those examples really normally distributed, or is that just a useful approximation? True normally distributed random variables take negative values with positive probability.
$endgroup$
– Artem Mavrin
8 hours ago




$begingroup$
But are those examples really normally distributed, or is that just a useful approximation? True normally distributed random variables take negative values with positive probability.
$endgroup$
– Artem Mavrin
8 hours ago




1




1




$begingroup$
@Happy Actually neither example given here is normally distributed because the support of the normal distribution is -infinity to +infinity and the examples given can never be zero or less. In each case the normal distribution might be a useful approximation, but not if you were interested in the tails of the distribution.
$endgroup$
– JeremyC
8 hours ago




$begingroup$
@Happy Actually neither example given here is normally distributed because the support of the normal distribution is -infinity to +infinity and the examples given can never be zero or less. In each case the normal distribution might be a useful approximation, but not if you were interested in the tails of the distribution.
$endgroup$
– JeremyC
8 hours ago




2




2




$begingroup$
Human height is the result of the sum of (approximately) independent genes, so they actually are due to the CLT.
$endgroup$
– gardenhead
7 hours ago




$begingroup$
Human height is the result of the sum of (approximately) independent genes, so they actually are due to the CLT.
$endgroup$
– gardenhead
7 hours ago




1




1




$begingroup$
@ArtemMavrin: getting a negative height would be something like 8+ standard deviations. If one objects to a normal approximation not being valid because it places zero probability mass beyond 8 sd's, you might as well also complain that a truly Normally distributed value is irrational with probability 1, yet all our measurements are rational numbers.
$endgroup$
– Cliff AB
7 hours ago




$begingroup$
@ArtemMavrin: getting a negative height would be something like 8+ standard deviations. If one objects to a normal approximation not being valid because it places zero probability mass beyond 8 sd's, you might as well also complain that a truly Normally distributed value is irrational with probability 1, yet all our measurements are rational numbers.
$endgroup$
– Cliff AB
7 hours ago




1




1




$begingroup$
@ArtemMavrin: well, if the question is any thing exactly normally distributed, that answer is simple: no. Not even rnorm(1). Same with all distributions, other than multinomial.
$endgroup$
– Cliff AB
7 hours ago




$begingroup$
@ArtemMavrin: well, if the question is any thing exactly normally distributed, that answer is simple: no. Not even rnorm(1). Same with all distributions, other than multinomial.
$endgroup$
– Cliff AB
7 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Cross Validated!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401055%2fare-there-any-examples-of-a-variable-being-normally-distributed-that-is-not-du%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр