What loss function to use when labels are probabilities? Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Why would neural networks be a particularly good framework for “embodied AI”?Understanding GAN Loss functionHelp with implementing Q-learning for a feedfoward network playing a video gameHow do I implement softmax forward propagation and backpropagation to replace sigmoid in a neural network?Gradient of hinge loss functionHow to understand marginal loglikelihood objective function as loss function (explanation of an article)?What is batch / batch size in neural networks?Comparing and studying Loss FunctionsLoss function spikesPredicting sine using LSTM: Small output range and delayed output?

Estimated State payment too big --> money back; + 2018 Tax Reform

Why is "Captain Marvel" translated as male in Portugal?

How to market an anarchic city as a tourism spot to people living in civilized areas?

Problem when applying foreach loop

New Order #5: where Fibonacci and Beatty meet at Wythoff

What is the largest species of polychaete?

Determine whether f is a function, an injection, a surjection

Cauchy Sequence Characterized only By Directly Neighbouring Sequence Members

What did Darwin mean by 'squib' here?

What's the point in a preamp?

What items from the Roman-age tech-level could be used to deter all creatures from entering a small area?

Slither Like a Snake

Is there a service that would inform me whenever a new direct route is scheduled from a given airport?

Cold is to Refrigerator as warm is to?

If A makes B more likely then B makes A more likely"

What is the electric potential inside a point charge?

Can I add database to AWS RDS MySQL without creating new instance?

Complexity of many constant time steps with occasional logarithmic steps

Passing functions in C++

How is simplicity better than precision and clarity in prose?

Can the prologue be the backstory of your main character?

Are my PIs rude or am I just being too sensitive?

How should I respond to a player wanting to catch a sword between their hands?

Why use gamma over alpha radiation?



What loss function to use when labels are probabilities?



Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Why would neural networks be a particularly good framework for “embodied AI”?Understanding GAN Loss functionHelp with implementing Q-learning for a feedfoward network playing a video gameHow do I implement softmax forward propagation and backpropagation to replace sigmoid in a neural network?Gradient of hinge loss functionHow to understand marginal loglikelihood objective function as loss function (explanation of an article)?What is batch / batch size in neural networks?Comparing and studying Loss FunctionsLoss function spikesPredicting sine using LSTM: Small output range and delayed output?



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



Would something like MSE (after applying softmax) make sense, or is there a better loss function?










share|improve this question







New contributor




Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$


















    1












    $begingroup$


    What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



    It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



    Would something like MSE (after applying softmax) make sense, or is there a better loss function?










    share|improve this question







    New contributor




    Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      1












      1








      1





      $begingroup$


      What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



      It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



      Would something like MSE (after applying softmax) make sense, or is there a better loss function?










      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



      It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



      Would something like MSE (after applying softmax) make sense, or is there a better loss function?







      neural-networks loss-functions probability-distribution






      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 hours ago









      Thomas JohnsonThomas Johnson

      1083




      1083




      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



          You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



          $$H(p,q)=-sum_xin X p(x) log q(x).$$
          $ $



          Note that one-hot labels would mean that
          $$
          p(x) =
          begincases
          1 & textif x text is the true label\
          0 & textotherwise
          endcases$$



          which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



          $$H(p,q) = -log q(x_label)$$






          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "658"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11816%2fwhat-loss-function-to-use-when-labels-are-probabilities%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



            You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



            $$H(p,q)=-sum_xin X p(x) log q(x).$$
            $ $



            Note that one-hot labels would mean that
            $$
            p(x) =
            begincases
            1 & textif x text is the true label\
            0 & textotherwise
            endcases$$



            which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



            $$H(p,q) = -log q(x_label)$$






            share|improve this answer









            $endgroup$

















              1












              $begingroup$

              Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



              You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



              $$H(p,q)=-sum_xin X p(x) log q(x).$$
              $ $



              Note that one-hot labels would mean that
              $$
              p(x) =
              begincases
              1 & textif x text is the true label\
              0 & textotherwise
              endcases$$



              which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



              $$H(p,q) = -log q(x_label)$$






              share|improve this answer









              $endgroup$















                1












                1








                1





                $begingroup$

                Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



                You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



                $$H(p,q)=-sum_xin X p(x) log q(x).$$
                $ $



                Note that one-hot labels would mean that
                $$
                p(x) =
                begincases
                1 & textif x text is the true label\
                0 & textotherwise
                endcases$$



                which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



                $$H(p,q) = -log q(x_label)$$






                share|improve this answer









                $endgroup$



                Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



                You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



                $$H(p,q)=-sum_xin X p(x) log q(x).$$
                $ $



                Note that one-hot labels would mean that
                $$
                p(x) =
                begincases
                1 & textif x text is the true label\
                0 & textotherwise
                endcases$$



                which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



                $$H(p,q) = -log q(x_label)$$







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 5 hours ago









                Philip RaeisghasemPhilip Raeisghasem

                963119




                963119




















                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.












                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.











                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Artificial Intelligence Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11816%2fwhat-loss-function-to-use-when-labels-are-probabilities%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                    Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                    Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр