Can we apply L'Hospital's rule where the derivative is not continuous? The 2019 Stack Overflow Developer Survey Results Are InResilient L'Hospital's rule questionIs this a valid use of l'Hospital's Rule? Can it be used recursively?Simple Derivation of Functional Equation Question (L'Hospital's Rule)L'Hôpital's rule and Difference QuotientsL'Hôpital's rule does not apply?!Fake proof for “differentiability implies continuous derivative”: reviewL'Hospital's rule helpCan a function be differentiable on an interval, but not continuously differentiable somewhere besides an oscillating discontinuity in the derivative?Compute the limit without L'Hospital's ruleProof of L'Hospital's Rule
Inflated grade on resume at previous job, might former employer tell new employer?
Is flight data recorder erased after every flight?
Why do UK politicians seemingly ignore opinion polls on Brexit?
Spanish for "widget"
Landlord wants to switch my lease to a "Land contract" to "get back at the city"
What is the best strategy for white in this position?
Idiomatic way to prevent slicing?
Output the Arecibo Message
"What time...?" or "At what time...?" - what is more grammatically correct?
Access elements in std::string where positon of string is greater than its size
Falsification in Math vs Science
Should I write numbers in words or as numerals when there are multiple next to each other?
Does duplicating a spell with Wish count as casting that spell?
What do the Banks children have against barley water?
Evaluating number of iteration with a certain map with While
Why is Grand Jury testimony secret?
What do hard-Brexiteers want with respect to the Irish border?
Lethal sonic weapons
Why is the maximum length of openwrt’s root password 8 characters?
Patience, young "Padovan"
What is this 4-propeller plane?
Is three citations per paragraph excessive for undergraduate research paper?
aging parents with no investments
How was Skylab's orbit inclination chosen?
Can we apply L'Hospital's rule where the derivative is not continuous?
The 2019 Stack Overflow Developer Survey Results Are InResilient L'Hospital's rule questionIs this a valid use of l'Hospital's Rule? Can it be used recursively?Simple Derivation of Functional Equation Question (L'Hospital's Rule)L'Hôpital's rule and Difference QuotientsL'Hôpital's rule does not apply?!Fake proof for “differentiability implies continuous derivative”: reviewL'Hospital's rule helpCan a function be differentiable on an interval, but not continuously differentiable somewhere besides an oscillating discontinuity in the derivative?Compute the limit without L'Hospital's ruleProof of L'Hospital's Rule
$begingroup$
My doubt arises due to the following :
We know that the definition of the derivative of a function at a point $x=a$, if it is differentiable at $a$, is:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h$$
Suppose that the function $f(x)$ is differentiable in a finite interval $[c,d]$ and $a in (c,d) $
So, we can apply L'Hospital's rule. On differentiating numerator and denominator with respect to $h$, we get:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h = lim_h rightarrow 0 frac f'(a+h)1$$
Which implies that
$$f'(a) = lim_h rightarrow 0 f'(a+h)$$
Which means that the function $f'(x)$ is continuous at $x=a$
But this not necessarily true. A function may have a derivative everywhere but its derivative may not be continuous at some point. One of many counterexamples is:
$$f(x) = begincases 0 text ; if x=0 \ x^2 sin frac1x text; if x $neq$ 0 endcases$$
Whose derivative isn't continuous at $0$
So, is something wrong with what I have done ? Or is it necessary that for applying L'Hospital's rule, the function's derivative must be a continuous function?
If the latter is true, why does that condition appear in the proof for L'Hospital's rule ?
limits derivatives continuity
$endgroup$
add a comment |
$begingroup$
My doubt arises due to the following :
We know that the definition of the derivative of a function at a point $x=a$, if it is differentiable at $a$, is:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h$$
Suppose that the function $f(x)$ is differentiable in a finite interval $[c,d]$ and $a in (c,d) $
So, we can apply L'Hospital's rule. On differentiating numerator and denominator with respect to $h$, we get:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h = lim_h rightarrow 0 frac f'(a+h)1$$
Which implies that
$$f'(a) = lim_h rightarrow 0 f'(a+h)$$
Which means that the function $f'(x)$ is continuous at $x=a$
But this not necessarily true. A function may have a derivative everywhere but its derivative may not be continuous at some point. One of many counterexamples is:
$$f(x) = begincases 0 text ; if x=0 \ x^2 sin frac1x text; if x $neq$ 0 endcases$$
Whose derivative isn't continuous at $0$
So, is something wrong with what I have done ? Or is it necessary that for applying L'Hospital's rule, the function's derivative must be a continuous function?
If the latter is true, why does that condition appear in the proof for L'Hospital's rule ?
limits derivatives continuity
$endgroup$
add a comment |
$begingroup$
My doubt arises due to the following :
We know that the definition of the derivative of a function at a point $x=a$, if it is differentiable at $a$, is:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h$$
Suppose that the function $f(x)$ is differentiable in a finite interval $[c,d]$ and $a in (c,d) $
So, we can apply L'Hospital's rule. On differentiating numerator and denominator with respect to $h$, we get:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h = lim_h rightarrow 0 frac f'(a+h)1$$
Which implies that
$$f'(a) = lim_h rightarrow 0 f'(a+h)$$
Which means that the function $f'(x)$ is continuous at $x=a$
But this not necessarily true. A function may have a derivative everywhere but its derivative may not be continuous at some point. One of many counterexamples is:
$$f(x) = begincases 0 text ; if x=0 \ x^2 sin frac1x text; if x $neq$ 0 endcases$$
Whose derivative isn't continuous at $0$
So, is something wrong with what I have done ? Or is it necessary that for applying L'Hospital's rule, the function's derivative must be a continuous function?
If the latter is true, why does that condition appear in the proof for L'Hospital's rule ?
limits derivatives continuity
$endgroup$
My doubt arises due to the following :
We know that the definition of the derivative of a function at a point $x=a$, if it is differentiable at $a$, is:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h$$
Suppose that the function $f(x)$ is differentiable in a finite interval $[c,d]$ and $a in (c,d) $
So, we can apply L'Hospital's rule. On differentiating numerator and denominator with respect to $h$, we get:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h = lim_h rightarrow 0 frac f'(a+h)1$$
Which implies that
$$f'(a) = lim_h rightarrow 0 f'(a+h)$$
Which means that the function $f'(x)$ is continuous at $x=a$
But this not necessarily true. A function may have a derivative everywhere but its derivative may not be continuous at some point. One of many counterexamples is:
$$f(x) = begincases 0 text ; if x=0 \ x^2 sin frac1x text; if x $neq$ 0 endcases$$
Whose derivative isn't continuous at $0$
So, is something wrong with what I have done ? Or is it necessary that for applying L'Hospital's rule, the function's derivative must be a continuous function?
If the latter is true, why does that condition appear in the proof for L'Hospital's rule ?
limits derivatives continuity
limits derivatives continuity
edited 3 hours ago
200_success
668515
668515
asked 10 hours ago
DhvanitDhvanit
1239
1239
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.
$endgroup$
$begingroup$
@Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
$endgroup$
– user647486
10 hours ago
$begingroup$
Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
$endgroup$
– Ingix
10 hours ago
add a comment |
$begingroup$
In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.
New contributor
$endgroup$
add a comment |
$begingroup$
The derivative value exists if:
1. the left-side (-0) derivative exists
2. the right-side (+0) derivative exists
3. and they are the same/identical .
In your case they are not identical.
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181050%2fcan-we-apply-lhospitals-rule-where-the-derivative-is-not-continuous%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.
$endgroup$
$begingroup$
@Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
$endgroup$
– user647486
10 hours ago
$begingroup$
Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
$endgroup$
– Ingix
10 hours ago
add a comment |
$begingroup$
L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.
$endgroup$
$begingroup$
@Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
$endgroup$
– user647486
10 hours ago
$begingroup$
Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
$endgroup$
– Ingix
10 hours ago
add a comment |
$begingroup$
L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.
$endgroup$
L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.
answered 10 hours ago
HelmutHelmut
789128
789128
$begingroup$
@Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
$endgroup$
– user647486
10 hours ago
$begingroup$
Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
$endgroup$
– Ingix
10 hours ago
add a comment |
$begingroup$
@Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
$endgroup$
– user647486
10 hours ago
$begingroup$
Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
$endgroup$
– Ingix
10 hours ago
$begingroup$
@Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
$endgroup$
– user647486
10 hours ago
$begingroup$
@Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
$endgroup$
– user647486
10 hours ago
$begingroup$
Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
$endgroup$
– Ingix
10 hours ago
$begingroup$
Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
$endgroup$
– Ingix
10 hours ago
add a comment |
$begingroup$
In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.
New contributor
$endgroup$
add a comment |
$begingroup$
In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.
New contributor
$endgroup$
add a comment |
$begingroup$
In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.
New contributor
$endgroup$
In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.
New contributor
New contributor
answered 10 hours ago
mihaildmihaild
56810
56810
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
The derivative value exists if:
1. the left-side (-0) derivative exists
2. the right-side (+0) derivative exists
3. and they are the same/identical .
In your case they are not identical.
New contributor
$endgroup$
add a comment |
$begingroup$
The derivative value exists if:
1. the left-side (-0) derivative exists
2. the right-side (+0) derivative exists
3. and they are the same/identical .
In your case they are not identical.
New contributor
$endgroup$
add a comment |
$begingroup$
The derivative value exists if:
1. the left-side (-0) derivative exists
2. the right-side (+0) derivative exists
3. and they are the same/identical .
In your case they are not identical.
New contributor
$endgroup$
The derivative value exists if:
1. the left-side (-0) derivative exists
2. the right-side (+0) derivative exists
3. and they are the same/identical .
In your case they are not identical.
New contributor
New contributor
answered 8 hours ago
user9user9
1
1
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181050%2fcan-we-apply-lhospitals-rule-where-the-derivative-is-not-continuous%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown