Can we apply L'Hospital's rule where the derivative is not continuous? The 2019 Stack Overflow Developer Survey Results Are InResilient L'Hospital's rule questionIs this a valid use of l'Hospital's Rule? Can it be used recursively?Simple Derivation of Functional Equation Question (L'Hospital's Rule)L'Hôpital's rule and Difference QuotientsL'Hôpital's rule does not apply?!Fake proof for “differentiability implies continuous derivative”: reviewL'Hospital's rule helpCan a function be differentiable on an interval, but not continuously differentiable somewhere besides an oscillating discontinuity in the derivative?Compute the limit without L'Hospital's ruleProof of L'Hospital's Rule

Output the Arecibo Message

A poker game description that does not feel gimmicky

Why is the maximum length of OpenWrt’s root password 8 characters?

Spanish for "widget"

Is it possible for the two major parties in the UK to form a coalition with each other instead of a much smaller party?

What is the best strategy for white in this position?

How can I create a character who can assume the widest possible range of creature sizes?

Falsification in Math vs Science

Deadlock Graph and Interpretation, solution to avoid

How long do I have to send payment?

What is the use of option -o in the useradd command?

Geography at the pixel level

What effect does the “loading” weapon property have in practical terms?

Carnot-Caratheodory metric

How to deal with fear of taking dependencies

How was Skylab's orbit inclination chosen?

Pristine Bit Checking

What does "sndry explns" mean in one of the Hitchhiker's guide books?

Why isn't airport relocation done gradually?

What is the meaning of Triage in Cybersec world?

Why do UK politicians seemingly ignore opinion polls on Brexit?

How to change the limits of integration

Why don't Unix/Linux systems traverse through directories until they find the required version of a linked library?

Springs with some finite mass



Can we apply L'Hospital's rule where the derivative is not continuous?



The 2019 Stack Overflow Developer Survey Results Are InResilient L'Hospital's rule questionIs this a valid use of l'Hospital's Rule? Can it be used recursively?Simple Derivation of Functional Equation Question (L'Hospital's Rule)L'Hôpital's rule and Difference QuotientsL'Hôpital's rule does not apply?!Fake proof for “differentiability implies continuous derivative”: reviewL'Hospital's rule helpCan a function be differentiable on an interval, but not continuously differentiable somewhere besides an oscillating discontinuity in the derivative?Compute the limit without L'Hospital's ruleProof of L'Hospital's Rule










7












$begingroup$


My doubt arises due to the following :



We know that the definition of the derivative of a function at a point $x=a$, if it is differentiable at $a$, is:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h$$



Suppose that the function $f(x)$ is differentiable in a finite interval $[c,d]$ and $a in (c,d) $



So, we can apply L'Hospital's rule. On differentiating numerator and denominator with respect to $h$, we get:
$$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h = lim_h rightarrow 0 frac f'(a+h)1$$
Which implies that
$$f'(a) = lim_h rightarrow 0 f'(a+h)$$
Which means that the function $f'(x)$ is continuous at $x=a$



But this not necessarily true. A function may have a derivative everywhere but its derivative may not be continuous at some point. One of many counterexamples is:
$$f(x) = begincases 0 text ; if x=0 \ x^2 sin frac1x text; if x $neq$ 0 endcases$$
Whose derivative isn't continuous at $0$



So, is something wrong with what I have done ? Or is it necessary that for applying L'Hospital's rule, the function's derivative must be a continuous function?



If the latter is true, why does that condition appear in the proof for L'Hospital's rule ?










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    My doubt arises due to the following :



    We know that the definition of the derivative of a function at a point $x=a$, if it is differentiable at $a$, is:
    $$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h$$



    Suppose that the function $f(x)$ is differentiable in a finite interval $[c,d]$ and $a in (c,d) $



    So, we can apply L'Hospital's rule. On differentiating numerator and denominator with respect to $h$, we get:
    $$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h = lim_h rightarrow 0 frac f'(a+h)1$$
    Which implies that
    $$f'(a) = lim_h rightarrow 0 f'(a+h)$$
    Which means that the function $f'(x)$ is continuous at $x=a$



    But this not necessarily true. A function may have a derivative everywhere but its derivative may not be continuous at some point. One of many counterexamples is:
    $$f(x) = begincases 0 text ; if x=0 \ x^2 sin frac1x text; if x $neq$ 0 endcases$$
    Whose derivative isn't continuous at $0$



    So, is something wrong with what I have done ? Or is it necessary that for applying L'Hospital's rule, the function's derivative must be a continuous function?



    If the latter is true, why does that condition appear in the proof for L'Hospital's rule ?










    share|cite|improve this question











    $endgroup$














      7












      7








      7


      1



      $begingroup$


      My doubt arises due to the following :



      We know that the definition of the derivative of a function at a point $x=a$, if it is differentiable at $a$, is:
      $$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h$$



      Suppose that the function $f(x)$ is differentiable in a finite interval $[c,d]$ and $a in (c,d) $



      So, we can apply L'Hospital's rule. On differentiating numerator and denominator with respect to $h$, we get:
      $$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h = lim_h rightarrow 0 frac f'(a+h)1$$
      Which implies that
      $$f'(a) = lim_h rightarrow 0 f'(a+h)$$
      Which means that the function $f'(x)$ is continuous at $x=a$



      But this not necessarily true. A function may have a derivative everywhere but its derivative may not be continuous at some point. One of many counterexamples is:
      $$f(x) = begincases 0 text ; if x=0 \ x^2 sin frac1x text; if x $neq$ 0 endcases$$
      Whose derivative isn't continuous at $0$



      So, is something wrong with what I have done ? Or is it necessary that for applying L'Hospital's rule, the function's derivative must be a continuous function?



      If the latter is true, why does that condition appear in the proof for L'Hospital's rule ?










      share|cite|improve this question











      $endgroup$




      My doubt arises due to the following :



      We know that the definition of the derivative of a function at a point $x=a$, if it is differentiable at $a$, is:
      $$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h$$



      Suppose that the function $f(x)$ is differentiable in a finite interval $[c,d]$ and $a in (c,d) $



      So, we can apply L'Hospital's rule. On differentiating numerator and denominator with respect to $h$, we get:
      $$f'(a) = lim_h rightarrow 0 frac f(a+h) - f(a)h = lim_h rightarrow 0 frac f'(a+h)1$$
      Which implies that
      $$f'(a) = lim_h rightarrow 0 f'(a+h)$$
      Which means that the function $f'(x)$ is continuous at $x=a$



      But this not necessarily true. A function may have a derivative everywhere but its derivative may not be continuous at some point. One of many counterexamples is:
      $$f(x) = begincases 0 text ; if x=0 \ x^2 sin frac1x text; if x $neq$ 0 endcases$$
      Whose derivative isn't continuous at $0$



      So, is something wrong with what I have done ? Or is it necessary that for applying L'Hospital's rule, the function's derivative must be a continuous function?



      If the latter is true, why does that condition appear in the proof for L'Hospital's rule ?







      limits derivatives continuity






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 7 hours ago









      200_success

      668515




      668515










      asked 14 hours ago









      DhvanitDhvanit

      12310




      12310




















          3 Answers
          3






          active

          oldest

          votes


















          9












          $begingroup$

          L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            @Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
            $endgroup$
            – user647486
            14 hours ago











          • $begingroup$
            Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
            $endgroup$
            – Ingix
            14 hours ago


















          2












          $begingroup$

          In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.






          share|cite|improve this answer








          New contributor




          mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$




















            0












            $begingroup$

            The derivative value exists if:
            1. the left-side (-0) derivative exists
            2. the right-side (+0) derivative exists
            3. and they are the same/identical .



            In your case they are not identical.






            share|cite|improve this answer








            New contributor




            user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181050%2fcan-we-apply-lhospitals-rule-where-the-derivative-is-not-continuous%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              9












              $begingroup$

              L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                @Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
                $endgroup$
                – user647486
                14 hours ago











              • $begingroup$
                Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
                $endgroup$
                – Ingix
                14 hours ago















              9












              $begingroup$

              L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                @Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
                $endgroup$
                – user647486
                14 hours ago











              • $begingroup$
                Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
                $endgroup$
                – Ingix
                14 hours ago













              9












              9








              9





              $begingroup$

              L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.






              share|cite|improve this answer









              $endgroup$



              L'Hospital's rule says under certain conditions: IF $lim_hto 0 fracf'(h)g'(h)=c$ exists, then also $lim_hto 0 fracf(h)g(h)=c$. It does not say anything about the existence of the former limit.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 14 hours ago









              HelmutHelmut

              809128




              809128











              • $begingroup$
                @Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
                $endgroup$
                – user647486
                14 hours ago











              • $begingroup$
                Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
                $endgroup$
                – Ingix
                14 hours ago
















              • $begingroup$
                @Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
                $endgroup$
                – user647486
                14 hours ago











              • $begingroup$
                Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
                $endgroup$
                – Ingix
                14 hours ago















              $begingroup$
              @Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
              $endgroup$
              – user647486
              14 hours ago





              $begingroup$
              @Dhvanit when $lim_hto0fracf'(h)g'(h)$ is one of $pminfty$, which some people classify as not existing, the implication also holds.
              $endgroup$
              – user647486
              14 hours ago













              $begingroup$
              Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
              $endgroup$
              – Ingix
              14 hours ago




              $begingroup$
              Basically, the condition mentioned in this answer means that applying L'Hospital's rule assumes that $lim_hto 0f'(a+h)$ exists. And if it exists, it can be shown that it must be $f'(a)$ (because derivatives need not be continuous, but still must fulfill the intermdiate value condition).
              $endgroup$
              – Ingix
              14 hours ago











              2












              $begingroup$

              In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.






              share|cite|improve this answer








              New contributor




              mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.






              $endgroup$

















                2












                $begingroup$

                In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.






                share|cite|improve this answer








                New contributor




                mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.






                  share|cite|improve this answer








                  New contributor




                  mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  $endgroup$



                  In this case - yes, you need derivative to be continuous. In general, you need $lim fracf'(x)g'(x)$ to exist to apply L'Hospital's rule. As in your case $g'(x) = 1$, you proved that if there is a limit of $f'(a + h)$, then the limit is equal to $f'(a)$.







                  share|cite|improve this answer








                  New contributor




                  mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  share|cite|improve this answer



                  share|cite|improve this answer






                  New contributor




                  mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  answered 14 hours ago









                  mihaildmihaild

                  57810




                  57810




                  New contributor




                  mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





                  New contributor





                  mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  mihaild is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





















                      0












                      $begingroup$

                      The derivative value exists if:
                      1. the left-side (-0) derivative exists
                      2. the right-side (+0) derivative exists
                      3. and they are the same/identical .



                      In your case they are not identical.






                      share|cite|improve this answer








                      New contributor




                      user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.






                      $endgroup$

















                        0












                        $begingroup$

                        The derivative value exists if:
                        1. the left-side (-0) derivative exists
                        2. the right-side (+0) derivative exists
                        3. and they are the same/identical .



                        In your case they are not identical.






                        share|cite|improve this answer








                        New contributor




                        user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.






                        $endgroup$















                          0












                          0








                          0





                          $begingroup$

                          The derivative value exists if:
                          1. the left-side (-0) derivative exists
                          2. the right-side (+0) derivative exists
                          3. and they are the same/identical .



                          In your case they are not identical.






                          share|cite|improve this answer








                          New contributor




                          user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          $endgroup$



                          The derivative value exists if:
                          1. the left-side (-0) derivative exists
                          2. the right-side (+0) derivative exists
                          3. and they are the same/identical .



                          In your case they are not identical.







                          share|cite|improve this answer








                          New contributor




                          user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.









                          share|cite|improve this answer



                          share|cite|improve this answer






                          New contributor




                          user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.









                          answered 12 hours ago









                          user9user9

                          1




                          1




                          New contributor




                          user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.





                          New contributor





                          user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          user9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181050%2fcan-we-apply-lhospitals-rule-where-the-derivative-is-not-continuous%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

                              Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

                              Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр