Is the gradient of the self-intersections of a curve zero? The 2019 Stack Overflow Developer Survey Results Are InMonotonic curvature and self intersections.Parallel translation along a self intersecting curveSelf adjoint total covariant derivativeStokes Theorem for Manifolds with Self-IntersectionsIntersections of two curves in $mathbbR^n$Self intersections of a smooth closed curve being deformedProving that strictly monotonic curvature implies no self intersections (more specifically, using the following inequalities)Does an immersed curve in general position has finite self-intersections?Can we describe Injective and non-Injective functions through intersections?Problem understanding the gradient of a field.
How was Skylab's orbit inclination chosen?
Falsification in Math vs Science
Time travel alters history but people keep saying nothing's changed
Why could you hear an Amstrad CPC working?
Why can Shazam do this?
Extreme, unacceptable situation and I can't attend work tomorrow morning
The difference between dialogue marks
Pristine Bit Checking
Carnot-Caratheodory metric
Are USB sockets on wall outlets live all the time, even when the switch is off?
aging parents with no investments
Patience, young "Padovan"
If a poisoned arrow's piercing damage is reduced to 0, do you still get poisoned?
What is the motivation for a law requiring 2 parties to consent for recording a conversation
Confusion about non-derivable continuous functions
Why is it "Tumoren" and not "Tumore"?
Why Did Howard Stark Use All The Vibranium They Had On A Prototype Shield?
Geography at the pixel level
Should I write numbers in words or as numerals when there are multiple next to each other?
What is this 4-propeller plane?
Why is the maximum length of openwrt’s root password 8 characters?
Is bread bad for ducks?
Does light intensity oscillate really fast since it is a wave?
Is this food a bread or a loaf?
Is the gradient of the self-intersections of a curve zero?
The 2019 Stack Overflow Developer Survey Results Are InMonotonic curvature and self intersections.Parallel translation along a self intersecting curveSelf adjoint total covariant derivativeStokes Theorem for Manifolds with Self-IntersectionsIntersections of two curves in $mathbbR^n$Self intersections of a smooth closed curve being deformedProving that strictly monotonic curvature implies no self intersections (more specifically, using the following inequalities)Does an immersed curve in general position has finite self-intersections?Can we describe Injective and non-Injective functions through intersections?Problem understanding the gradient of a field.
$begingroup$
Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?
real-analysis calculus geometry differential-geometry
$endgroup$
add a comment |
$begingroup$
Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?
real-analysis calculus geometry differential-geometry
$endgroup$
add a comment |
$begingroup$
Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?
real-analysis calculus geometry differential-geometry
$endgroup$
Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?
real-analysis calculus geometry differential-geometry
real-analysis calculus geometry differential-geometry
edited 8 hours ago
Ernie060
2,940719
2,940719
asked 9 hours ago
winstonwinston
537418
537418
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
$endgroup$
add a comment |
$begingroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181199%2fis-the-gradient-of-the-self-intersections-of-a-curve-zero%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
$endgroup$
add a comment |
$begingroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
$endgroup$
add a comment |
$begingroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
$endgroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
answered 9 hours ago
Robert IsraelRobert Israel
331k23220475
331k23220475
add a comment |
add a comment |
$begingroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
$endgroup$
add a comment |
$begingroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
$endgroup$
add a comment |
$begingroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
$endgroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
answered 9 hours ago
StrantsStrants
5,84921736
5,84921736
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181199%2fis-the-gradient-of-the-self-intersections-of-a-curve-zero%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown