Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy. Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraSuppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy

What’s with the clanks in Endgame?

std::is_constructible on incomplete types

Putting Ant-Man on house arrest

Map material from china not allowed to leave the country

My admission is revoked after accepting the admission offer

How do I check if a string is entirely made of the same substring?

Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.

As an international instructor, should I openly talk about my accent?

Is accepting an invalid credit card number a security issue?

Passing args from the bash script to the function in the script

What is this word supposed to be?

What is the best way to deal with NPC-NPC combat?

Are these square matrices always diagonalisable?

A Paper Record is What I Hamper

My bank got bought out, am I now going to have to start filing tax returns in a different state?

Does Feeblemind produce an ongoing magical effect that can be dispelled?

How would this chord from "Rocket Man" be analyzed?

Additive group of local rings

What is a 'Key' in computer science?

What is the least dense liquid under normal conditions?

Why did C use the -> operator instead of reusing the . operator?

Implementing 3DES algorithm in Java: is my code secure?

Rolling Stones Sway guitar solo chord function

How to not starve gigantic beasts



Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraSuppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy










3












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    5 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    4 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    2 hours ago











  • $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    26 mins ago
















3












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    5 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    4 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    2 hours ago











  • $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    26 mins ago














3












3








3


1



$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$




Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.







real-analysis cauchy-sequences






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 5 hours ago









oranjioranji

666




666







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    5 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    4 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    2 hours ago











  • $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    26 mins ago













  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    5 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    4 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    2 hours ago











  • $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    26 mins ago








1




1




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
5 hours ago




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
5 hours ago












$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
4 hours ago




$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
4 hours ago












$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
2 hours ago





$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
2 hours ago













$begingroup$
I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
$endgroup$
– Robert Shore
26 mins ago





$begingroup$
I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
$endgroup$
– Robert Shore
26 mins ago











2 Answers
2






active

oldest

votes


















3












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    2 hours ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    2 hours ago


















4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    2 hours ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    2 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    2 hours ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    2 hours ago















3












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    2 hours ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    2 hours ago













3












3








3





$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$



To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 2 hours ago









trancelocationtrancelocation

14.6k1929




14.6k1929











  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    2 hours ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    2 hours ago
















  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    2 hours ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    2 hours ago















$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
2 hours ago




$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
2 hours ago




1




1




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
2 hours ago




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
2 hours ago











4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    2 hours ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    2 hours ago















4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    2 hours ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    2 hours ago













4












4








4





$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$



This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 4 hours ago









Subhasis BiswasSubhasis Biswas

628512




628512











  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    2 hours ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    2 hours ago
















  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    2 hours ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    2 hours ago















$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
2 hours ago




$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
2 hours ago












$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
2 hours ago




$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
2 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to create a command for the “strange m” symbol in latex? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do you make your own symbol when Detexify fails?Writing bold small caps with mathpazo packageplus-minus symbol with parenthesis around the minus signGreek character in Beamer document titleHow to create dashed right arrow over symbol?Currency symbol: Turkish LiraDouble prec as a single symbol?Plus Sign Too Big; How to Call adfbullet?Is there a TeX macro for three-legged pi?How do I get my integral-like symbol to align like the integral?How to selectively substitute a letter with another symbol representing the same letterHow do I generate a less than symbol and vertical bar that are the same height?

Българска екзархия Съдържание История | Български екзарси | Вижте също | Външни препратки | Литература | Бележки | НавигацияУстав за управлението на българската екзархия. Цариград, 1870Слово на Ловешкия митрополит Иларион при откриването на Българския народен събор в Цариград на 23. II. 1870 г.Българската правда и гръцката кривда. От С. М. (= Софийски Мелетий). Цариград, 1872Предстоятели на Българската екзархияПодмененият ВеликденИнформационна агенция „Фокус“Димитър Ризов. Българите в техните исторически, етнографически и политически граници (Атлас съдържащ 40 карти). Berlin, Königliche Hoflithographie, Hof-Buch- und -Steindruckerei Wilhelm Greve, 1917Report of the International Commission to Inquire into the Causes and Conduct of the Balkan Wars

Чепеларе Съдържание География | История | Население | Спортни и природни забележителности | Културни и исторически обекти | Религии | Обществени институции | Известни личности | Редовни събития | Галерия | Източници | Литература | Външни препратки | Навигация41°43′23.99″ с. ш. 24°41′09.99″ и. д. / 41.723333° с. ш. 24.686111° и. д.*ЧепелареЧепеларски Linux fest 2002Начало на Зимен сезон 2005/06Национални хайдушки празници „Капитан Петко Войвода“Град ЧепелареЧепеларе – народният ски курортbgrod.orgwww.terranatura.hit.bgСправка за населението на гр. Исперих, общ. Исперих, обл. РазградМузей на родопския карстМузей на спорта и скитеЧепеларебългарскибългарскианглийскитукИстория на градаСки писти в ЧепелареВремето в ЧепелареРадио и телевизия в ЧепелареЧепеларе мами с родопски чар и добри пистиЕвтин туризъм и снежни атракции в ЧепелареМестоположениеИнформация и снимки от музея на родопския карст3D панорами от ЧепелареЧепелареррр